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Welcome to the Jupyter Project documentation. This website acts as “meta” documentation for the Jupyter ecosys-
tem. It has a collection of resources to navigate the tools and communities in this ecosystem, and to help you get
started.

CONTENTS 1
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CHAPTER

ONE

START HERE

These are a few high-level topics to help you learn more about the Jupyter community and ecosystem.

Get started with Jupyter Notebook
Try the notebook

Community
Sustainability and growth

Architecture
What is Jupyter?

Contributor Guides
How to contribute to the projects

Narratives and Use Cases
Narratives of common deployment scenarios

Release Notes
New features, upgrades, deprecation notes, and bug fixes

IPython
An interactive Python kernel and REPL

Reference
APIs

Installation, Configuration, and Usage
Documentation for users

Advanced
Documentation for advanced use-cases
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CHAPTER

TWO

SUB-PROJECT DOCUMENTATION

Sub-projects are major technical and community efforts, and generally have their own documentation for their commu-
nities. Below is a list of documentation for major parts of the Jupyter ecosystem.

User Interfaces

• JupyterLab

• Jupyter Notebook

• nbclassic

• Jupyter Console

• Qt console

• Voilà

JupyterHub

• JupyterHub

• Configurable HTTP proxy

• Authenticators: LDAP, OAuth, Native, LTI

• Spawners: sudo, Docker, Kubernetes

• Zero to JupyterHub

• All JupyterHub Projects. . .

Working with Notebooks

• nbclient - execution

• nbconvert - conversion

• nbviewer - viewing

• nbdime - comparing and merging

• nbgrader - grading

• nbformat - modification and validation

Kernels

• IPython

• IRkernel

• IJulia

• Xeus kernels
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• Community maintained kernels

IPython

• IPython

• ipykernel

• ipyparallel

• traitlets

Architecture and Specification

• nbformat - Jupyter Notebook Format

• jupyter-client - Jupyter Messaging Protocol

• jupyter-core

• jupyter-server

• jupyterlab-server

Deployment

• Docker Stacks

• Kernel Gateway

• Enterprise Gateway

Widgets

• ipywidgets

• widget-cookiecutter

• All Widget Projects. . .

6 Chapter 2. Sub-project documentation
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THREE

TABLE OF CONTENTS

The rest of the documentation on this site covers major use-cases of the Jupyter ecosystem, as well as topics that will
help you navigate the various parts of the Jupyter community. For more in-depth documentation about a specific tool,
we recommend checking out that tool’s documentation (see the list above).

3.1 Try Jupyter

Contents

• Try in Your Browser. No Installation Needed.

– Try the Classic Notebook interface

– Try the JupyterLab interface

• Next step: install Jupyter locally

These sections describe a few ways to get started with some of the most-commonly used tools in the Jupyter ecosystem.

3.1.1 Try in Your Browser. No Installation Needed.

Try Jupyter (https://try.jupyter.org) is a site for trying out the Jupyter Notebook, equipped with kernels for several
different languages (Julia, R, C++, Scheme, Ruby) without installing anything. Click the link below to go to the page.

Click to Try Jupyter

When running the examples on the Try Jupyter site, you will get a temporary Jupyter server running on mybinder.org
which you can use to play around until you close your browser session.

You can use this site to try a few of the major interactive computing interfaces created by the Jupyter community. A
description of each is below.

7
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Try the Classic Notebook interface

The Classic Notebook interface is a document-oriented interface that allows you to create, view, and execute code in a
Jupyter Notebook.

The example should look like this:

Notebook Dashboard

Notebook Editor

8 Chapter 3. Table of Contents
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Try the JupyterLab interface

The Jupyter Lab interface is a more extensible and composable interactive computing interface for more complex
workflows.

Here’s an example of what the JupyterLab interface looks like:

3.1. Try Jupyter 9



Jupyter Documentation, Release 4.1.1 alpha

3.1.2 Next step: install Jupyter locally

If you have tried Jupyter and like it, please use our Installation Guide to install Jupyter on your computer.

Install and Use

This page contains information and links about installing and using tools across the Jupyter ecosystem. Generally
speaking, the documentation of each tool is the place to learn about the best-practices for how to install and use the
tool.

Jupyter Notebook Interface

The Jupyter Notebook interface is a Web-based application for authoring documents that combine live-code with
narrative text, equations and visualizations.

• GitHub Repo

• Docs

Installing the classic Jupyter Notebook interface

This section includes instructions on how to get started with Jupyter Notebook. But there are multiple Jupyter user
interfaces one can use, based on their needs. Please checkout the list and links below for additional information and
instructions about how to get started with each of them.

This information explains how to install the Jupyter Notebook and the IPython kernel.

Prerequisite: Python

While Jupyter runs code in many programming languages, Python is a requirement for installing the Jupyter Notebook.
The Python version required differs between Jupyter Notebook releases (e.g. Python 3.6+ for Notebook v6.3, and
Python 3.7+ for Notebook v7) .

We recommend using the Anaconda distribution to install Python and Jupyter. We’ll go through its installation in the
next section.

Installing Jupyter using Anaconda and conda

For new users, we highly recommend installing Anaconda. Anaconda conveniently installs Python, the Jupyter Note-
book, and other commonly used packages for scientific computing and data science.

Use the following installation steps:

1. Download Anaconda. We recommend downloading Anaconda’s latest Python 3 version (currently Python 3.9).

2. Install the version of Anaconda which you downloaded, following the instructions on the download page.

3. Congratulations, you have installed Jupyter Notebook. To run the notebook:

jupyter notebook

See Running the Notebook for more details.

10 Chapter 3. Table of Contents
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Alternative for experienced Python users: Installing Jupyter with pip

Important: Jupyter installation requires Python 3.3 or greater, or Python 2.7. IPython 1.x, which included the parts
that later became Jupyter, was the last version to support Python 3.2 and 2.6.

As an existing Python user, you may wish to install Jupyter using Python’s package manager, pip, instead of Anaconda.

First, ensure that you have the latest pip; older versions may have trouble with some dependencies:

pip3 install --upgrade pip

Then install the Jupyter Notebook using:

pip3 install jupyter

(Use pip if using legacy Python 2.)

Congratulations. You have installed Jupyter Notebook. See Running the Notebook for more details.

Upgrading Jupyter Notebook

Contents

• Upgrading Jupyter Notebook using Anaconda

• Upgrading IPython Notebook to Jupyter Notebook

Upgrading Jupyter Notebook using Anaconda

If using Anaconda, update Jupyter using conda:

conda update jupyter

See Run the Notebook for running the Jupyter Notebook.

Upgrading IPython Notebook to Jupyter Notebook

The Jupyter Notebook used to be called the IPython Notebook. If you are running an older version of the IPython
Notebook (version 3 or earlier) you can use the following to upgrade to the latest version of the Jupyter Notebook.

If using Anaconda, update Jupyter using conda:

conda update jupyter

or

If using pip:

pip install -U jupyter

3.1. Try Jupyter 11
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See Run the Notebook for running the Jupyter Notebook.

See also:

The migrating document has additional information about migrating from IPython 3 to Jupyter.

JupyterLab

JupyterLab is a next-generation web-based user interface for Project Jupyter.

• GitHub Repo

• Docs

• Install instructions

JupyterHub

JupyterHub is a multi-user hub for interactive computing sessions, made for teams and organizations, and with plug-
gable authentication and scalability.

• GitHub Repo

• Docs

• Install instructions

Jupyter Console

The Jupyter Console is a terminal-based console for interactive computing.

• GitHub Repo

• Docs and Install instructions

Jupyter QtConsole

The Jupyter QtConsole is a Qt application for interactive computing with rich output.

• GitHub Repo

• Docs

• Install instructions

Jupyter Kernels

You can install Jupyter Kernels to add support for new languages and code behavior.

12 Chapter 3. Table of Contents
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Installing Kernels

This information gives a high-level view of using Jupyter Notebook with different programming languages (kernels).

Are any languages pre-installed?

Yes, installing the Jupyter Notebook will also install the IPython kernel. This allows working on notebooks using the
Python programming language.

How do I install Python 2 and Python 3?

To install an additional version of Python, i.e. to have both Python 2 and 3 available, see the IPython docs on installing
kernels.

How do I install other languages like R or Julia?

To run notebooks in languages other than Python, such as R or Julia, you will need to install additional kernels. For
more information, see the full list of available kernels.

See also:

Jupyter Projects
Detailed installation instructions for individual Jupyter or IPython projects.

Kernels
Information about additional programming language kernels.

Kernels documentation for Jupyter client
Technical information about kernels.

Running the Notebook

Contents

• Basic Steps

• Starting the Notebook Server

• Introducing the Notebook Server’s Command Line Options

– How do I open a specific Notebook?

– How do I start the Notebook using a custom IP or port?

– How do I start the Notebook server without opening a browser?

– How do I get help about Notebook server options?

• Using a command-line interface

3.1. Try Jupyter 13
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Basic Steps

1. Start the notebook server from the command line:

jupyter notebook

2. You should see the notebook open in your browser.

Starting the Notebook Server

After you have installed the Jupyter Notebook on your computer, you are ready to run the notebook server. You can
start the notebook server from the command line (using Terminal on Mac/Linux, Command Prompt on Windows) by
running:

jupyter notebook

This will print some information about the notebook server in your terminal, including the URL of the web application
(by default, http://localhost:8888):

$ jupyter notebook
[I 08:58:24.417 NotebookApp] Serving notebooks from local directory: /Users/catherine
[I 08:58:24.417 NotebookApp] 0 active kernels
[I 08:58:24.417 NotebookApp] The Jupyter Notebook is running at: http://localhost:8888/
[I 08:58:24.417 NotebookApp] Use Control-C to stop this server and shut down all kernels␣
→˓(twice to skip confirmation).

It will then open your default web browser to this URL.

When the notebook opens in your browser, you will see the Notebook Dashboard, which will show a list of the note-
books, files, and subdirectories in the directory where the notebook server was started. Most of the time, you will wish
to start a notebook server in the highest level directory containing notebooks. Often this will be your home directory.

Notebook Dashboard

14 Chapter 3. Table of Contents
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Introducing the Notebook Server’s Command Line Options

How do I open a specific Notebook?

The following code should open the given notebook in the currently running notebook server, starting one if necessary.

jupyter notebook notebook.ipynb

How do I start the Notebook using a custom IP or port?

By default, the notebook server starts on port 8888. If port 8888 is unavailable or in use, the notebook server searches
the next available port. You may also specify a port manually. In this example, we set the server’s port to 9999:

jupyter notebook --port 9999

How do I start the Notebook server without opening a browser?

Start notebook server without opening a web browser:

jupyter notebook --no-browser

3.1. Try Jupyter 15
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How do I get help about Notebook server options?

The notebook server provides help messages for other command line arguments using the --help flag:

jupyter notebook --help

See also:

Jupyter Installation, Configuration, and Usage
Detailed information about command line arguments, configuration, and usage.

Using a command-line interface

Notebooks can be executed from your terminal using the run subcommand. It expects notebook paths as input argu-
ments and accepts optional flags to modify the default behavior.

Running a notebook is this easy.

jupyter run notebook.ipynb

You can pass more than one notebook as well.

jupyter run notebook.ipynb notebook2.ipynb

By default, notebook errors will be raised and printed into the terminal. You can suppress them by passing the
--allow-errors flag.

jupyter run notebook.ipynb --allow-errors

For more sophisticated execution options, consider the papermill library.

3.2 Usage

Information relevant to using the various tools in the Jupyter ecosystem.

3.2.1 Use and Configure

The jupyter Command

Synopsis

jupyter <subcommand> [options]

16 Chapter 3. Table of Contents
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Description

Commands like jupyter notebook start Jupyter applications. The jupyter command is primarily a namespace for
subcommands. A command like jupyter-foo found on your PATH will be available as a subcommand jupyter foo.

The jupyter command can also be used to do actions other than starting a Jupyter application.

Command options

-h, --help

Show help information, including available subcommands.

--config-dir

Show the location of the config directory.

--data-dir

Show the location of the data directory.

--runtime-dir

Show the location of the runtime directory.

--paths

Show all Jupyter directories and search paths.

--json

Print directories and search paths in machine-readable JSON format.

Common Directories and File Locations

Contents

• Configuration files

• Data files

• Runtime files

• Summary

Jupyter stores different files (i.e. configuration, data, runtime) in a number of different locations. Environment variables
may be set to customize for the location of each file type.

Jupyter separates data files (nbextensions, kernelspecs) from runtime files (logs, pid files, connection files) from
configuration (config files, custom.js).

3.2. Usage 17
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Configuration files

Config files are stored by default in the ~/.jupyter directory.

JUPYTER_CONFIG_DIR

Set this environment variable to use a particular directory, other than the default, for Jupyter config files.

Besides the JUPYTER_CONFIG_DIR , additional directories to search can be specified through JUPYTER_CONFIG_PATH .

JUPYTER_CONFIG_PATH

Set this environment variable to provide extra directories for the config search path. JUPYTER_CONFIG_PATH
should contain a series of directories, separated by `` os.pathsep`` (; on Windows, : on Unix).

An example of where the JUPYTER_CONFIG_PATH can be set is if notebook or server extensions are installed in a
custom prefix. Since notebook and server extensions are automatically enabled through configuration files, automatic
enabling will only work if the custom prefix’s etc/jupyter directory is added to the Jupyter config search path.

Besides the user config directory mentioned above, Jupyter has a search path of additional locations from which a
config file will be loaded. Here’s a table of the locations to be searched, in order of preference:

Unix Windows
JUPYTER_CONFIG_DIR
JUPYTER_CONFIG_PATH
{sys.prefix}/etc/jupyter/
/usr/local/etc/jupyter/ /etc/jupyter/ %PROGRAMDATA%\jupyter\

To list the config directories currently being used you can run the below command from the command line:

jupyter --paths

The following command shows the config directory specifically:

jupyter --config-dir

Data files

Jupyter uses a search path to find installable data files, such as kernelspecs and notebook extensions. When searching
for a resource, the code will search the search path starting at the first directory until it finds where the resource is
contained.

Each category of file is in a subdirectory of each directory of the search path. For example, kernel specs are in kernels
subdirectories.

JUPYTER_PATH

Set this environment variable to provide extra directories for the data search path. JUPYTER_PATH should
contain a series of directories, separated by os.pathsep (; on Windows, : on Unix). Directories given in
JUPYTER_PATH are searched before other locations. This is used in addition to other entries, rather than replac-
ing any.

18 Chapter 3. Table of Contents
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Linux (& other free desktops) Mac Windows
JUPYTER_PATH
JUPYTER_DATA_DIR or (if not set) ~/.local/
share/jupyter/ (respects $XDG_DATA_HOME)

JUPYTER_DATA_DIR or
(if not set) ~/Library/
Jupyter

JUPYTER_DATA_DIR or
(if not set) %APPDATA%\
jupyter

{sys.prefix}/share/jupyter/
/usr/local/share/jupyter /usr/share/jupyter %PROGRAMDATA\jupyter

The config directory for Jupyter data files, which contain non-transient, non-configuration files. Examples include
kernelspecs, nbextensions, or voila templates.

JUPYTER_DATA_DIR

Set this environment variable to use a particular directory, other than the default, as the user data directory.

As mentioned above, to list the config directories currently being used you can run the below command from the
command line:

jupyter --paths

The following command shows the data directory specifically:

jupyter --data-dir

Runtime files

Things like connection files, which are only useful for the lifetime of a particular process, have a runtime directory.

On Linux and other free desktop platforms, these runtime files are stored in $XDG_RUNTIME_DIR/jupyter by default.
On other platforms, it’s a runtime/ subdirectory of the user’s data directory (second row of the table above).

An environment variable may also be used to set the runtime directory.

JUPYTER_RUNTIME_DIR

Set this to override where Jupyter stores runtime files.

As mentioned above, to list the config directories currently being used you can run the below command from the
command line:

jupyter --paths

The following command shows the runtime directory specifically:

jupyter --runtime-dir

Summary

JUPYTER_CONFIG_DIR for config file location

JUPYTER_CONFIG_PATH for config file locations

JUPYTER_PATH for datafile directory locations

JUPYTER_DATA_DIR for data file location

JUPYTER_RUNTIME_DIR for runtime file location

3.2. Usage 19
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See also:

jupyter_core.paths
The Python API to locate these directories.

The jupyter Command
Locate these directories from the command line.

Jupyter’s Common Configuration Approach

Contents

• Summary

• The Python config file

• Command line options for configuration

Summary

Common Jupyter configuration system The Jupyter applications have a common config system, and a common config
directory. By default, this directory is ~/.jupyter.

Kernel configuration directories If kernels use config files, these will normally be organized in separate directories
for each kernel. For instance, the IPython kernel looks for files in the IPython directory instead of the default Jupyter
directory ~/.jupyter.

The Python config file

To create a default config file, run:

jupyter {application} --generate-config

The generated file will be named jupyter_application_config.py.

By editing the jupyter_application_config.py file, you can configure class attributes like this:

c.NotebookApp.port = 8754

Be careful with spelling. Incorrect names will simply be ignored, with no error message.

To add to a collection which may have already been defined elsewhere, you can use methods like those found on lists,
dicts and sets: append, extend, prepend() (like extend, but at the front), add, and update (which works both for
dicts and sets):

c.TemplateExporter.template_path.append('./templates')

20 Chapter 3. Table of Contents
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Command line options for configuration

Every configurable value can also be set from the command line and passed as an argument, using this syntax:

jupyter notebook --NotebookApp.port=8754

Frequently used options will also have short aliases and flags, such as --port 8754 or --no-browser.

To see the abbreviated options, pass --help or --help-all as follows:

jupyter {application} --help # Just the short options
jupyter {application} --help-all # Includes options without short names

Command line options will override options set within a configuration file.

See also:

traitlets.config
The low-level architecture of this config system.

3.2.2 How do I decide which packages I need?

Jupyter can be used for many different use-cases. Below are a few user stories for when and how you might use tools
in the Jupyter ecosystem, as well as a diagram that helps lay out some of your options.

Narratives and Use Cases

Notebook Narratives

Contents

• Description

• Narrative examples

Description

The Notebook Narratives explore uses of the Jupyter Notebook in a variety of applications.

Narrative examples

• Using the Notebook for data exploration

• Using extensions and widgets

• Using nbconvert for code execution and workflow simplification

• Using nbconvert for publishing

• Using multiple language kernels

3.2. Usage 21
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Note: We’re actively working on this section of the documentation to improve it for you. Thanks for your patience.

JupyterHub Narratives

Contents

• Description

• Narrative examples

Description

JupyterHub Narratives explore deployment and scaling of the Jupyter Notebook for a group of users. JupyterHub allows
flexibility in configuration and deployment which makes JupyterHub valuable to education, industry research teams,
and service providers. In these Narratives, we will look at differences in deployment, deployment advantages, and best
practices.

Narrative examples

• A basic JupyterHub deployment

• A reference deployment of JupyterHub using Docker

• Teaching a Course with JupyterHub and nbgrader using a reference deployment on a single server and Ansible
scripts to automate set up

• Teaching a Course with JupyterHub, nbgrader, and containers

• JupyterHub deployments using Containers including Docker

Note: We’re actively working on this section of the documentation to improve it for you. Thanks for your patience.

Narratives - Building blocks

Contents

• Description

• Narrative examples

22 Chapter 3. Table of Contents

https://github.com/jupyterhub/jupyterhub-deploy-docker
https://github.com/jupyterhub/jupyterhub-deploy-teaching
https://github.com/jupyterhub/jupyterhub-deploy-teaching


Jupyter Documentation, Release 4.1.1 alpha

Description

This section presents some examples of integrating different projects together. These projects form the foundation of
innovative services and provide building blocks for future applications.

Narrative examples

• A Narrative about Creating Dashboards

• A Narrative about Thebe

• A Narrative about Hydrogen

Note: We’re actively working on this section of the documentation to improve it for you. Thanks for your patience.

Jupyter for Data Science

The purpose of this page is to highlight kernels and other projects that are central to the usage of Jupyter in data
science. This page is not meant to be comprehensive or unbiased, but rather to provide an opinionated view of the
usage of Jupyter in data science based on our interactions with users.

The following Jupyter kernels are widely used in data science:

• python

– IPython (GitHub Repo)

• R

– IRkernel (Documentation, GitHub Repo)

– IRdisplay (GitHub Repo)

– repr (GitHub Repo)

• Julia

– IJulia Kernel (GitHub Repo)

– Interactive Widgets (GitHub Repo)

• Bash (GitHub Repo)

Jupyter and Scientific Computing

Note: We’re actively working on this section of the documentation to improve it for you. Thanks for your patience.
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Jupyter in Education

Note: We’re actively working on this section of the documentation to improve it for you. Thanks for your patience.

Jupyter in the Enterprise

Contents

• Description

• Example Use-Cases

Description

Businesses, especially those that started their ‘digital transformation’ journey, are producing ever-increasing volumes
of data. Enterprise data science aims to unearth the hidden value of those digital assets, which are typically siloed,
uncategorized, and inaccessible to humans.

Jupyter and JupyterHub can play a major role in related initiatives, especially in companies with an established open-
source culture. The intent of this page is to provide you with ideas how Jupyter technology can fit into your organiza-
tion’s processes and system landscapes, by providing real-world examples and showcases.

Example Use-Cases

• Beyond Interactive: Notebook Innovation at Netflix

– Part 2: Scheduling Notebooks at Netflix

• PayPal Notebooks: Data science and machine learning at scale, powered by Jupyter (JupyterCon 2018 · video)

• Bloomberg BQuant platform

• Jupyter & Python in the corporate LAN

• DevOps Intelligence with JupyterHub

Note: We’re actively working on this section of the documentation to improve it for you. If you’ve got a suggestion
for a resource that would be helpful, please create an issue or a pull request!
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What are Narratives?

Narratives are collaborative, shareable, publishable, and reproducible. We believe that Narratives help both yourself
and other researchers by sharing your use of Jupyter projects, technical specifics of your deployment, and installation
and configuration tips so that others can learn from your experiences.

3.2.3 Advanced topics

Advanced Use Cases

Migrating from IPython Notebook

Contents

• Abstract

• Understanding the Migration Process

– Automatic migration of files

– Where have my configuration files gone?

• Finding the Location of Important Files

– Configuration files

– Data files: kernelspecs and notebook extensions

• Since Jupyter does not have profiles, how do I customize it?

– Changing the Jupyter notebook configuration directory

– Changing the Jupyter notebook configuration file

– Changing IPython’s profile using custom kernelspecs

• Understanding Installation Changes

– Notebook extensions

– Kernels

• Understanding Changes in imports

Abstract

The Big Split moved IPython’s various language-agnostic components under the Jupyter umbrella. Going forward,
Jupyter will contain the language-agnostic projects that serve many languages. IPython will continue to focus on
Python and its use with Jupyter.

This document describes what has changed, and how you may need to modify your code or configuration when migrat-
ing from IPython version 3 to Jupyter.
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Understanding the Migration Process

Automatic migration of files

The first time you run any jupyter command, it will perform an automatic migration of files. The automatic migration
process copies files, instead of moving files, leaving the originals in place and the copies in the Jupyter file locations.
You can re-run the migration, if needed, by calling jupyter migrate. Your custom configuration will be migrated
automatically and should work with Jupyter without further editing. When you update or modify your configuration in
the future, please keep in mind that the file locations may have changed.

Where have my configuration files gone?

Also known as: “Why isn’t my configuration having any effect anymore?”

Jupyter splitting out from IPython means that the locations of some files have moved, and Jupyter projects have not
inherited everything from how IPython did it.

When you start your first Jupyter application, the relevant configuration files are automatically copied to their new
Jupyter locations. The original configuration files in the IPython locations have no effect on Jupyter’s execution. If you
accidentally edit your original IPython config file, you may not see the desired effect with Jupyter now. You should
check that you are editing Jupyter’s configuration file, and you should see the expected effect after restarting the Jupyter
server.

Finding the Location of Important Files

This section provides quick reference for common locations of IPython 3 files and the migrated Jupyter files.

Configuration files

Configuration files customize Jupyter to the user’s preferences. The migrated files should all be automatically copied
to their new Jupyter locations. Here are the location changes:

IPython location Jupyter location
~/.ipython/profile_default/static/custom → ~/.jupyter/custom
~/.ipython/profile_default/
ipython_notebook_config.py

→ ~/.jupyter/
jupyter_notebook_config.py

~/.ipython/profile_default/
ipython_nbconvert_config.py

→ ~/.jupyter/
jupyter_nbconvert_config.py

~/.ipython/profile_default/
ipython_qtconsole_config.py

→ ~/.jupyter/
jupyter_qtconsole_config.py

~/.ipython/profile_default/
ipython_console_config.py

→ ~/.jupyter/
jupyter_console_config.py

To choose a directory location other than the default ~/.jupyter, set the JUPYTER_CONFIG_DIR environment vari-
able. You may need to run jupyter migrate after setting the environment variable for files to be copied to the desired
directory.
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Data files: kernelspecs and notebook extensions

Data files include files, other than configuration files, which are user installed. Examples include kernelspecs and
notebook extensions. Like the configuration files, data files are also automatically migrated to their new Jupyter
locations.

In IPython 3, data files lived in ~/.ipython.

In Jupyter, data files use platform-appropriate locations:

• OS X: ~/Library/Jupyter

• Windows: the location specified in %APPDATA% environment variable

• Elsewhere, $XDG_DATA_HOME is respected, with the default of ~/.local/share/jupyter

In all cases, the JUPYTER_DATA_DIR environment variable can be used to set a location explicitly.

Data files installed system-wide (e.g. in /usr/local/share/jupyter) have not changed. Per-user installation of
data files has changed location from .ipython to the platform-appropriate Jupyter location.

Since Jupyter does not have profiles, how do I customize it?

While IPython has the concept of profiles, Jupyter does not have profiles.

In IPython, profiles are collections of configuration and runtime files. Inside the IPython directory (~/.ipython),
there are directories with names like profile_default or profile_demo. In each of these are configuration
files (ipython_config.py, ipython_notebook_config.py) and runtime files (history.sqlite, security/
kernel-*.json). Profiles could be used to switch between configurations of IPython.

Previously, people could use commands like ipython notebook --profile demo to set the profile for both the
notebook server and the IPython kernel. This is no longer possible in one go with Jupyter, just like it wasn’t possible
in IPython 3 for any other kernels.

Changing the Jupyter notebook configuration directory

If you want to change the notebook configuration, you can set the JUPYTER_CONFIG_DIR:

JUPYTER_CONFIG_DIR=./jupyter_config
jupyter notebook

Changing the Jupyter notebook configuration file

If you just want to change the config file, you can do:

jupyter notebook --config=/path/to/myconfig.py
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Changing IPython’s profile using custom kernelspecs

If you do want to change the IPython kernel’s profile, you can’t do this at the server command-line anymore. Kernel
arguments must be changed by modifying the kernelspec. You can do this without relaunching the server. Kernelspec
changes take effect every time you start a new kernel. However, there isn’t a great way to modify the kernelspecs.
One approach uses jupyter kernelspec list to find the kernel.json file and then modifies it, e.g. kernels/
python3/kernel.json, by hand. Alternatively, a2km is an experimental project that tries to make these things easier.

For example, add the --profile option to a custom kernelspec under kernels/mycustom/kernel.json (see the
Jupyter kernelspec directions here):

{
"argv": ["python", "-m", "ipykernel",

"--profile=my-ipython-profile",
"-f", "{connection_file}"],

"display_name": "Custom Profile Python",
"language": "python"
}

You can then run Jupyter with the --kernel=mycustom command-line option and IPython will find the appropriate
profile.

Understanding Installation Changes

See the Install and Use page for more information about installing Jupyter. Jupyter automatically migrates some things,
like Notebook extensions and kernels.

Notebook extensions

Any IPython notebook extensions should be automatically migrated as part of the data files migration.

Notebook extensions were installed with:

ipython install-nbextension [--user] EXTENSION

Now, extensions are installed with:

jupyter nbextension install [--user] EXTENSION

The notebook extensions will be installed in a system-wide location (e.g. /usr/local/share/jupyter/
nbextensions). If doing a --user install, the notebook extensions will go in the JUPYTER_DATA_DIR location.
Installation SHOULD NOT be done manually by guessing where the files should go.
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Kernels

Kernels are installed in much the same way as notebook extensions. They will also be automatically migrated.

Kernel specs used to be installed with:

ipython kernelspec install [--user] KERNEL

They are now installed with:

jupyter kernelspec install [--user] KERNEL

By default, kernel specs will go in a system-wide location (e.g. /usr/local/share/jupyter/kernels). If doing
a --user install, the kernel specs will go in the JUPYTER_DATA_DIR location. Installation SHOULD NOT be done
manually by guessing where the files should go.

Understanding Changes in imports

IPython 4.0 includes shims to manage dependencies; so, all imports that work on IPython 3 should continue to work
on IPython 4. If you find any differences, please let us know.

Some changes include:

IPython 3 Jupyter and IPython 4.0
IPython.html → notebook
IPython.html.widgets → ipywidgets
IPython.kernel → jupyter_client, ipykernel
IPython.parallel → ipyparallel
IPython.qt.console → qtconsole
IPython.utils.traitlets → traitlets
IPython.config → traitlets.config

Important: The IPython.kernel Split

IPython.kernel became two packages:

• jupyter_client for the Jupyter client-side APIs.

• ipykernel for Jupyter’s IPython kernel

3.3 Projects

The Jupyter community is composed of several sub-communities and projects. These are organized around particular
use-cases, users, or other aspects of the Jupyter community. This section contains information to help navigate these
projects both from the perspective of a user and a community member.
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3.3.1 Jupyter Projects and Communities

Information relevant to understanding the many projects in the Jupyter ecosystem, including their technical components
and how they work and relate to one another.

Jupyter User Interfaces

The Jupyter user interfaces offer a foundation of interactive computing environments where scientific computing, data
science, and analytics can be performed using a wide range of programming languages.

Jupyter Notebook
Web-based application for authoring documents that combine live-code with narrative text, equations and visu-
alizations. Documentation | Repo

Jupyter Console
Terminal based console for interactive computing. Documentation | Repo

Jupyter QtConsole
Qt application for interactive computing with rich output. Documentation | Repo

Kernels (Programming Languages)

The Jupyter team maintains the IPython project which is shipped as a default kernel (as ipykernel) in a number of
Jupyter clients. Many other languages, in addition to Python, may be used in the notebook.

The community maintains many other language kernels, and new kernels become available often. Please see the list of
available kernels for additional languages and kernel installation instructions to begin using these language kernels.

Kernels

Kernels are programming language specific processes that run independently and interact with the Jupyter Applica-
tions and their user interfaces. ipykernel is the reference Jupyter kernel built on top of IPython, providing a powerful
environment for interactive computing in Python.

jupyter-client contains the authoritative description of the Jupyter messaging protocol which is used by clients to com-
municate with the kernels.

Xeus facilitates the implementation of kernels for Jupyter and provides a number of kernels such as xeus-cling (C++),
xeus-sql (SQL) and many more.

IPython
interactive computing in Python. Documentation | Repo

ipykernel
the wrapper around IPython which enables using IPython as a kernel Repo

Xeus
library facilitating the implementation of kernels for Jupyter. It implements the Jupyter Kernel protocol so de-
velopers can focus on implementing the interpreter part of the kernel. Documentation | Repo

See also:

Jupyter kernels

A full list of kernels available for other languages. Many of these kernels are developed by third parties and may or
may not be stable.
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Education

Jupyter Notebooks offer exciting and creative possibilities in education. The following subprojects are focused on
supporting the use of Jupyter Notebook in a variety of educational settings.

Teaching and Learning with Jupyter is a book about using Jupyter in teaching and learning.

nbgrader
tools for managing, grading, and reporting of notebook based assignments. Documentation | Repo

jupyter4edu
GitHub organization hosting community resources for Jupyter in education

Execution

Notebooks can be run outside of the browser interface with the following utility subprojects.

nbclient
NBClient lets you execute notebooks from different contexts, including the command-line. Documentation |
Repo

Deployment and infrastructure

To serve a variety of users and use cases, these subprojects are being developed to support notebook deployment in
various contexts, including multiuser capabilities and secure, scalable cloud deployments.

jupyterhub
Multi-user notebook for organizations with pluggable authentication and scalability. Documentation | Repo

nbviewer
Share notebooks as static HTML on the web. Documentation | Repo

Binder
Turn a Git repo into a collection of interactive notebooks Documentation | Repo

dockerspawner
Deploy notebooks for ‘jupyterhub’ inside Docker containers. Documentation | Repo

docker-stacks
Stacks of Jupyter applications and kernels as Docker containers. Documentation | Repo

Formatting and Conversion

Notebooks are rich interactive documents that combine live code, narrative text (using markdown), visualizations,
and other rich media. The following utility subprojects allow programmatic format conversion and manipulation of
notebook documents.

nbconvert
Convert dynamic notebooks to static formats such as HTML, Markdown, LaTeX/PDF, and reStructuredText.
Documentation | Repo

nbformat
Work with notebook documents programmatically. Documentation | Repo
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IPython

Contents

• Description

• Background

• Resources

Description

IPython provides a rich architecture for interactive computing with:

• A powerful interactive shell.

• A kernel for Jupyter.

• Support for interactive data visualization and use of GUI toolkits.

• Flexible, embeddable interpreters to load into your own projects.

• Easy to use, high performance tools for parallel computing.

Background

IPython is a growing project, with increasingly language-agnostic components. IPython 3.x was the last monolithic
release of IPython, containing the notebook server, qtconsole, etc. As of IPython 4.0, the language-agnostic parts of the
project: the notebook format, message protocol, qtconsole, notebook web application, etc. have moved to new projects
under the name Jupyter. IPython itself is focused on interactive Python, part of which is providing a Python kernel for
Jupyter.

Resources

The projects with repos in the IPython organization on GitHub include:

• IPython ipykernel interactive computing in Python.

• ipyparallel lightweight parallel computing in Python offering seamless notebook integration

• ipywidgets interactive widgets for Python in the Jupyter Notebook

Core Building Blocks

The Jupyter architecture relies on these projects’ specifications and implementation.

jupyter_client
The specification of the Jupyter message protocol and a client library in Python. Documentation | Repo

jupyter_core
Core functionality and miscellaneous utilities. Documentation | Repo
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Incubator Projects

Contents

• Descriptions

• Try the Incubator Projects

The Jupyter incubator gives emerging projects a place to evolve.

Descriptions

Interesting projects include:

• content management extensions - Jupyter Content Management Extensions

• dashboards - Jupyter Dynamic Dashboards from Notebooks

• declarative widgets - Jupyter Declarative Widgets Extension

• kernel gateway bundlers - Converts a notebook to a kernel gateway microservice bundle for download

• showcase - A spot to try demos of one or more incubating Jupyter projects in Binder

• sparkmagic - Jupyter magics and kernels for working with remote Spark clusters

• traittypes - Traitlets types for NumPy, SciPy and friends

There’s also a repository with proposals of projects wishing to enter the incubator.

Try the Incubator Projects

The showcase application allows you to try demos of one or more incubating Jupyter projects in Binder. Just head over
to the showcase repo and press the Launch Binder button badge to launch the online trial. You should see an interactive
notebook similar to this one:
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3.3.2 More information

Architecture

This page has information about the different architectural designs of core pieces in the Jupyter ecosystem. Some of
these are individual projects, and others show the relationships between projects.
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Projects overview

Below is a high level visual overview of project relationships. It is current as of 2022.

IPython Kernel

This section focuses on IPython and kernels. When we discuss IPython, we talk about two fundamental roles:

• Terminal IPython as the familiar REPL

• The IPython kernel, IPykernel that provides computation and communication with the frontend interfaces, like
the notebook
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Terminal IPython

When you type ipython, you get the original IPython interface, running in the terminal. It does something like this:

while True:
code = input(">>> ")
exec(code)

Of course, it’s much more complex, because it has to deal with multi-line code, tab completion using readline, magic
commands, and so on. But the model is like code example: prompt the user for some code, and when they’ve entered
it, execute it in the same process. This model is often called a REPL, or Read-Eval-Print-Loop.

The IPython Kernel

All the other interfaces —- the Notebook, the Qt console, ipython console in the terminal, and third party interfaces
—- use the IPython Kernel. IPykernel is a separate process which is responsible for running user code, and things like
computing possible completions. Frontends, like the notebook or the Qt console, communicate with the IPython Kernel
using JSON messages sent over ZeroMQ sockets; the protocol used between the frontends and the IPython Kernel is
described in Messaging in Jupyter.

The core execution machinery for the kernel is shared with terminal IPython.
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A kernel process can be connected to more than one frontend simultaneously. In this case, the different frontends will
have access to the same variables.

This design was intended to allow easy development of different frontends based on the same kernel, but it also made it
possible to support new languages in the same frontends, by developing kernels in those languages, and we are refining
IPython to make that more practical.

Today, there are three ways to develop a kernel for another language:

• Wrapper kernels reuse the communications machinery from IPykernel, and implement only the core execution
part.

• Native kernels implement execution and communications in the target language.

• Kernels based on xeus, a native implementation of the protocol, implement the language-specific part of the
kernels. Contrary to the wrapper approach, xeus does not depend on a python runtime.
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Wrapper kernels are easier to write quickly for languages that have good Python wrappers, like octave_kernel, or
languages where it’s impractical to implement the communications machinery, like bash_kernel. Native kernels are
likely to be better maintained by the community using them, like IJulia or IHaskell. Xeus kernels are easy to write
when the language interpreter provides a C++ or a C API.

See also:

Making kernels for Jupyter

Kernels

The Jupyter Notebook format

Jupyter Notebooks are structured data that represent your code, metadata, content, and outputs. When saved to disk,
the notebook uses the extension .ipynb, and uses a JSON structure. For more information about the notebook format
structure and specification, see the nbformat documentation.

The Jupyter Notebook Interface

Jupyter Notebook and its flexible interface extends the notebook beyond code to visualization, multimedia, collabo-
ration, and more. In addition to running your code, it stores code and output, together with markdown notes, in an
editable document called a notebook. When you save it, this is sent from your browser to the Jupyter server, which
saves it on disk as a JSON file with a .ipynb extension.
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https://pypi.python.org/pypi/octave_kernel
https://pypi.python.org/pypi/bash_kernel
https://github.com/JuliaLang/IJulia.jl
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The Jupyter server is a communication hub. The browser, notebook file on disk, and kernel cannot talk to each other
directly. They communicate through the Jupyter server. The Jupyter server, not the kernel, is responsible for saving
and loading notebooks, so you can edit notebooks even if you don’t have the kernel for that language—you just won’t
be able to run code. The kernel doesn’t know anything about the notebook document: it just gets sent cells of code to
execute when the user runs them.

Exporting Jupyter Notebooks to other formats

The Nbconvert tool in Jupyter converts notebook files to other formats, such as HTML, LaTeX, or reStructuredText.
This conversion goes through a series of steps:

1. Preprocessors modify the notebook in memory. E.g. ExecutePreprocessor runs the code in the notebook and
updates the output.
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2. An exporter converts the notebook to another file format. Most of the exporters use templates for this.

3. Postprocessors work on the file produced by exporting.

The nbviewer website uses nbconvert with the HTML exporter. When you give it a URL, it fetches the notebook from
that URL, converts it to HTML, and serves that HTML to you.

IPython.parallel

IPython also includes a parallel computing framework, IPython.parallel. This allows you to control many individual
engines, which are an extended version of the IPython kernel described above.

JupyterHub and Binder

JupyterHub is a multi-user Hub that spawns, manages, and proxies multiple instances of the single-user Jupyter note-
book server. This can be used to serve a variety of interfaces and environments, and can be run on many kinds of
infrastructure. JupyterHub on Kubernetes is a Helm Chart for running JupyterHub on kubernetes infrastructure, and
BinderHub is a customized JupyterHub deployment for shareable, reproducible interactive computing environments.

The links below describe the architecture of JupyterHub and several distributions of JupyterHub.

• JupyterHub core architecture

• JupyterHub for Kubernetes architecture

• BinderHub architecture

JupyterLab

JupyterLab is a flexible, extensible interface for interactive computing. Below are a few links that are useful for under-
standing the JupyterLab architecture.

• JupyterLab document model

• JupyterLab notebook model

• Design patterns in JupyterLab

Project Documentation

Contents

• Jupyter User Interfaces

• JupyterHub

• Education

• Execution

• Notebook Conversion and Formatting

• Kernels

• IPython
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http://nbviewer.jupyter.org/
https://ipyparallel.readthedocs.io/en/latest/
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• Deployment

• JupyterLab

• Architecture

Links to information on usage, configuration and development hosted on Read The Docs or in the GitHub project
repo.

Jupyter User Interfaces

• Jupyter Notebook

• jupyter_console

• qtconsole

JupyterHub

• JupyterHub

• configurable-http-proxy

• dockerspawner

• ldapauthenticator

• oauthenticator

• sudospawner

Education

• nbgrader

Execution

• nbclient

Notebook Conversion and Formatting

• nbconvert

• nbformat
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https://jupyter-notebook.readthedocs.io/en/latest/
https://jupyter-console.readthedocs.io/en/latest/
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Kernels

• IPython

• IRkernel

• IJulia

• List of community maintained language kernels

IPython

• IPython

• ipykernel

• ipyparallel

Deployment

• docker-stacks

• ipywidgets

• jupyter-drive

• jupyter-sphinx-theme

• kernel_gateway

• nbviewer

• tmpnb

• traitlets

JupyterLab

• jupyter-js-notebook

• jupyter-js-phosphide

• jupyter-js-plugins

• jupyter-js-services

• jupyter-js-ui

• jupyter-js-utils

42 Chapter 3. Table of Contents

https://ipython.readthedocs.io/en/stable/
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Architecture

• jupyter_client

• jupyter_core

Release Notes

When projects release a new version, they often include “release notes” with information about improvements, bug-
fixes, and other changes. These projects are the best source of information about what has recently changed.

Below you’ll find links to the release notes for several major projects in the Jupyter ecosystem.

Jupyter Notebook

You can find a changelog at the Jupyter Notebook documentation.

JupyterLab

You can find a changelog at the JupyterLab documentation.

JupyterHub

You can find a list of changelogs in the JupyterHub community within the JupyterHub team compass documentation.

3.4 Community

Welcome to the Community Guides for Jupyter. These guides are intended to provide information about the Jupyter
community such as background, events, and communication channels. As our community is highly dynamic, informa-
tion may change, and we will do our best to keep it up to date.

3.4.1 Community Call Notes

The Jupyter Community Call is an open video call. Think of this as a “monthly, virtual JupyterCon”. It’s a place for
anyone to announce and share fun things happening in the Jupyter community. Everyone is welcome (even if you’re
not presenting). We record these videos and post them on YouTube. For more information, read this discourse thread.

Jupyter Community Call 11/29

Date: November 29, 2022, at 7am Pacific (in your timezone)

Discourse Youtube

Please note:

• Community calls are recorded and posted to this playlist

• These notes will be recorded and posted here

• Everyone present is held to the Jupyter Code of Conduct
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https://jupyter-client.readthedocs.io/en/latest/
https://jupyter-core.readthedocs.io/en/latest/
https://jupyter-notebook.readthedocs.io/en/stable/changelog.html
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Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.

Short reports, celebrations, shout-outs

There were no short reports this month.

Agenda Items

• Gabriela Vives Present a usability study done on JupyterLab

• Eric Gao Jupyter+Apache DolphinsSheduler Demo

• Nick Bollweg jupikchr: pikchr plain-text diagrams for JupyterLab, etc.

Other Links Shared

This is a space to store links shared during community call discussions related to or separate from the agenda items.

• jupyter/surveys

• Jupyter community building committee

• JupyterLite as a frontend for software forges - Jupyter Discourse

Attendees

Name Institution GitHub Handle
Yuze Ma Alibaba Cloud bobmayuze
Frederic Collonval QuantStack @fcollonval
Gabriela Vives QuantStack GabrielaVives
Matthew Seal Noteable Inc MSeal
Wayne Decatur Upstate Medical University fomightez
Eric Gao Jupyter+Apache DolphinsSheduler Demo EricGao888
tonyfast unaffiliated @tonyfast
Isabela Presedo-Floyd Quansight Labs @isabela-pf

Plus 11 more.
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https://discourse.jupyter.org/t/reviving-the-all-jupyter-team-meetings/423
https://github.com/deathbeds/jupikchr
https://github.com/jupyter/surveys
https://jupyter.org/governance/communitybuildingcommittee.html
https://github.com/jupyterlite/jupyterlite/discussions/874
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Jupyter Community Call 10/25

Date: October 25, 2022, at 7am Pacific (in your timezone)

Discourse Youtube

Please note:

• Community calls are recorded and posted to this playlist

• These notes will be recorded and posted here

• Everyone present is held to the Jupyter Code of Conduct

Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.

Short reports, celebrations, shout-outs

• Shout out to all the cats and kittens on the call!

• Sarah JupyterHub is participating in Outreachy and has lots of applicants!

• Isabela Earlier this month, a group of people met to do keyboard navigation manual tests on the Jupyter Notebook
7 prerelease. It was great to have people meeting to work on accessibility.

• Steve Python 3.11 was released yesterday.

Agenda Items

• Jan-Hendrik Müller, Ricky Alinsky: A new perspective on creating example galleries from notebooks.

– Plywood gallery (and its VS Code extension!)

– https://discourse.jupyter.org/t/plywood-gallery-generate-python-documentation-via-notebooks/16510

• deathbeds: a bike shed means blood shed

– “when markdown and python collide” - https://tonyfast.github.io/tonyfast/run/lab/index.html?path=xxii/oct/2022-
10-21-markdown-future.ipynb?room=deathbeds-more-like-deft-breads

∗ https://github.com/tonyfast/midgy

∗ https://github.com/deathbeds/pidgy

∗ https://github.com/deathbeds/importnb

∗ https://github.com/tonyfast/tonyfast

– “Spooky-ber Note-boo-ks” with jupyterlab-deck and a history of presenting in notebooks and a reporting
deck (with Robot Framework).

• Debra Chen, Niko Zeng: Invitation for joint-holding comminity meetup
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https://arewemeetingyet.com/Los%20Angeles/2022-10-25/7:00/Jupyter%20Community%20Call
https://discourse.jupyter.org/t/jupyter-community-calls/668
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Other Links Shared

This is a space to store links shared during community call discussions related to or separate from the agenda items.

• Open Source Design Discourse

• Jupyter Discourse

Attendees

Name Institution GitHub Handle
Jan-Hendrik Müller University of Göttingen @kolibril13
Ricky M. Alinsky GUSTO University @Rickaym
Steve Silvester MongoDB @blink1073
Debra Chen DolphinScheduler community @debrachena
Sarah Gibson 2i2c @sgibson91
Isabela Presedo-Floyd Quansight Labs @isabela-pf

Plus 7 more.

Jupyter Community Call 09/27

Date: September 27, 2022, at 7am Pacific (in your timezone)

Discourse

Youtube

Please note:

• Community calls are recorded and posted to this playlist

• These notes will be recorded and posted here

• Everyone present is held to the Jupyter Code of Conduct

Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.

Short reports, celebrations, shout-outs

This is a place to make short announcements (without a need for discussion).

• jupyterlite 0.1.0b13 is released, with support for ipywidgets 8
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https://discourse.opensourcedesign.net/
https://discourse.jupyter.org/
https://arewemeetingyet.com/Los%20Angeles/2022-09-27/7:00/Jupyter%20Community%20Call
https://discourse.jupyter.org/t/jupyter-community-calls/668
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Agenda Items

• Peter Vidos ipyvizzu-story - A short intro of a new, open-source data storytelling tool for Jupyter Notebook.

– Repo: https://github.com/vizzuhq/ipyvizzu-story

– Example (HTML): https://vizzuhq.github.io/ipyvizzu-story/examples/demo/ipyvizzu-story_example.html

• Yuze Questions about Jupyter community in the APAC region

Other Links Shared

This is a space to store links shared during community call discussions related to or separate from the agenda items.

• Books by Alberto Cairo

• Animated charts and story telling with IpyVizzu

• Charting Data guidelines - Apple Human Interface Guidelines

• Chartability

• Join the Vizzu Community Slack

• JupyterHub team compass

Attendees

Name Institution GitHub Handle
AT Darian QuantStack @afshin
Alex Bozarth IBM @ajbozarth
Yuze Ma Alibaba Group @bobmayuze
Wayne Decatur Upstate Med. University @fomightez
Isabela Presedo-Floyd Quansight Labs @isabela-pf

Plus 5 more

Jupyter Community Call 08/30

Date: August 30, 2022, at 7am Pacific (in your timezone)

Discourse

Youtube

Please note:

• Community calls are recorded and posted to this playlist

• Everyone present is held to the Jupyter Code of Conduct
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Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.

Short reports, celebrations, shout-outs

• Isabela Shout out to the different group of people we have today! New faces or not, thanks for taking the initiative
to be here.

Agenda Items

• Naas Presenting Naas open source framework to create data products from notebook templates.

– Jupyter Naas GitHub Repo

– Three main repos: Naas, awesome-notebooks, and drivers.

∗ Future facing work can be sampled at nass-content-engine. The idea is templates as widgets.

• Linda or Bosco (Frederic as backup) - Demonstrate new jupyterlab-git features added through the MLH Sum-
mer 22 program.

New features are already available in v0.39.0, try it with pip install -U jupyterlab-git Full
changelog is available there

• Darian

– Lumino 2 update leading up to JupyterLab 4 and Notebook 7 (migrating JupyterLab to Lumino 2)

– Jupyter Governance update

Other Links Shared

This is a space to store links shared during community call discussions related to or separate from the agenda items.

• The Tyranny of Structurelessness - Jo Freeman

Attendees

Name Institution GitHub Handle
Jeremy Ravenel Naas @jupyter-naas
Frederic Collonval QuantStack @fcollonval
AT Darian QuantStack @afshin
David Brochart QuantStack @davidbrochart
Maxime Jublou Naas @Dr0p42
Gabriel Fouasnon Quansight Labs @gabalafou
Wayne Decatur Upstate Medical University @fomightez
Alex Bozarth IBM @ajbozarth
Eric Holscher Read the Docs @ericholscher
Isabela Presedo-Floyd Quansight Labs @isabela-pf
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Plus 8 more.

Jupyter Community Call 07/26

Date: July 26, 2022, at 8am Pacific (in your timezone)

Discourse

YouTube

Please note:

• Community calls are recorded and posted to this playlist

• Everyone present is held to the Jupyter Code of Conduct

Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.

Short reports, celebrations, shout-outs

This is a place to make short announcements (without a need for discussion).

• Darian Governance update: Executive Council, Software Steering Council, Distinguished Contributors

• Darian Lumino 2

• rcthomas Reminder on Github 2FA for Jupyter Project developers

– https://blog.jupyter.org/requiring-2fa-for-jupyter-github-organizations-ad15507da9b1

• nick voila-dashboards almost works with lab (no more cdnjs/unpkg, etc.)

• fcollonval JupyterLab 3.4.4 released - Changelog

• Isabela JupyterLab accessibility calls are still happening, and everyone is welcome. Our next call is tomorrow
at 10:15am Pacific!

• nick ipywidgets latest docs now include jupyterlite demos

Agenda Items

• Isabela Favorite community call memories/what you want next

– Demos of work people are building on top of Jupyter (but not sales pitches)

– “Pie”

– Themes for calls!

– Lightning talk length of share (right now we have one minute or ten)

– “live demos are always good even if they’re incomplete”

– “I’d like people to report a new thing they learned “today I learned” using a Jupyter notebook recently”

– Sign up sheet to mix up hosts! Good for everyone to get experience and can bring in new energy.
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– Recognize testers

– Once a quarter: “here’s four ways you can contribute” as a recurring topic so people get reminded and don’t
have to watch the back catalog to hear it (or a list of projects to contribute to)

Other Links Shared

This is a space to store links shared during community call discussions related to or separate from the agenda items.

• [The New Soul Vegetarian Cookbook](https://www.amazon.com/New-Soul-Vegetarian-
Cookbook/dp/0942683137 https://www.amazon.com/Grit-Cookbook-World-Wise-Down-Home-
Recipes/dp/1556526482)

Attendees

Name Institution GitHub Handle
Frederic Collonval QuantStack @fcollonval
Simon Li University of Dundee @manics
A. T. Darian QuantStack @afshin
Wayne Decatur Upstate University @fomightez
Rollin Thomas NERSC @rcthomas
Jeremy Tuloup QuantStack @jtpio
Isabela Presedo-Floyd Quansight Labs @isabela-pf

Plus 4 more.

Jupyter Community Call June 28

Date: June 28, 2022, at 3am Pacific (in your timezone)

Discourse

YouTube Link

Please note:

• Community calls are recorded and posted to this playlist

• Everyone present is held to the Jupyter Code of Conduct

Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.
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Short reports, celebrations, shout-outs

• Steve: coming soon - getting rid of setuptools for extension authors - work is being coordinated on a PR on
JupyterLab

• Nick: jupyterlite kernels can now access contents directly

Agenda Items

• Tony ??? (how general is the nbformat?)

– And where are we going next

Other Links Shared

This is a space to store links shared during community call discussions related to or separate from the agenda items.

• My Brainfuck CPU - A simple Processor in Python via MyHDL (part 1)

• jmshea/digicom-jupyter Digital Communications JupyterLite Site

• Idea: Binder + JupyterLite = BinderLite? (Jupyter Discourse)

• Neal Brennan: 3 Mics

• Types - Web Assembly

Attendees

Name Institution GitHub Handle
Steven Silvester MongoDB @blink1073
Nick Bollweg Georgia Tech @bollwyvl
A. T. Darian QuantStack @afshin
Isabela Presedo-Floyd Quansight Labs @isabela-pf
Tony Fast Quansight @tonyfast

Plus 1 more.

Jupyter Community Call May 31

Date: May 31, 2022, at 7am Pacific (in your timezone)

Discourse

YouTube link

Please note:

• Community calls are recorded and posted to this playlist

• Everyone present is held to the Jupyter Code of Conduct
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https://github.com/jupyterlab/jupyterlab/pull/12606
https://github.com/jupyterlite/jupyterlite/releases/tag/v0.1.0b10
https://gist.github.com/tonyfast/6c236af7dcaa87fc012f31b720575dd7
https://nbviewer.org/github/sandbender/BF_CPU/blob/master/BF_MYHDL_CPU_v2.ipynb
https://github.com/jmshea/digicom-jupyter
https://discourse.jupyter.org/t/idea-binder-jupyterlite-binderlite/14449
https://www.imdb.com/title/tt6438918/?ref_=nm_flmg_wr_7
https://webassembly.github.io/spec/core/syntax/types.html
https://arewemeetingyet.com/Los%20Angeles/2022-05-31/7:00/Jupyter%20Community%20Call
https://discourse.jupyter.org/t/jupyter-community-calls/668
https://youtu.be/KzH7yJ07PgQ
https://www.youtube.com/playlist?list=PLUrHeD2K9Cmkoamm4NjLmvXC4Y6E1o8SP
https://jupyter.org/conduct
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Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.

Short reports, celebrations, shout-outs

• Isabela: Shout out to the security team for rolling out awesome documentation on the Jupyter Vulnerability
Handling Process!

• Isabela: Reminder that the Jupyter Community Workshops call for proposals has been extended! You can now
apply until June 6.

• Mike Organising an internal intermediate/advanced jupyter training at Oxford, anything cool you would like to
to share with biomedical researchers?

– Matthias: I would search a bit on the napari side.

– Chris Holdgraf is in Europe and runs 2i2c, he might be a good person to ask.

– Romeo: reach out about relevant talks

∗ Deep Learning in biomedical and genomics data

· . . . using JuypterLab

· . . . using Elyra Pipelines

∗ Deep Learning based image analysis in Radiology

∗ An overview and life demo of JupyterLab Extensions for Genomics

∗ An overview and life demo of JupyterLab Extensions for Life Science

• Please don’t disable authentication in Jupyter servers- Jupyter blog

• Matthias: SciPy draft done! Hooray!

• Gayle: Shout out to Sylvain for speaking at the upcoming PyData London

Agenda Items

Add agenda items here before the meeting. We will reorganize the agenda so that it fits in the 60m meeting slot.

• Name This is an example of agenda item formatting.

• Matthias And https://github.com/jupyter/jupyter.github.io/pull/696, we’d love to know if some folks want to
participate / help handle the process – no need to be be a security expert.

• Matthias Question : Anything to organise about SciPy ?

– Gayle: there is interest in organizing, but we need ideas! Reach out if there’s something you’d like to
organize.

– Isabela: not aware of anything that has developed yet, but can ask around.

• Isabela Sharing two cool resources I don’t see talked about often:

– jupyter/surveys

– JupyterLab user stories
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https://discourse.jupyter.org/t/reviving-the-all-jupyter-team-meetings/423
https://github.com/jupyter/security/blob/main/docs/vulnerability-handling.md#roles
https://github.com/jupyter/security/blob/main/docs/vulnerability-handling.md#roles
https://blog.jupyter.org/jupyter-community-workshops-c7491a3cca00
https://2i2c.org/
https://blog.jupyter.org/please-dont-disable-authentication-in-jupyter-servers-dd197206e7f6
https://pydata.org/london2022/
https://github.com/jupyter/surveys
https://github.com/jupyterlab/jupyterlab/tree/master/design
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Other Links Shared

This is a space to store links shared during community call discussions related to or separate from the agenda items.

• A curated list of awesome Jupyter projects, libraries and resources at markusschanta/awesome-jupyter

• A curated list of awesome JupyterLab extensions and resources at mauhai/awesome-jupyterlab

Attendees

Name Institution GitHub Handle
Wayne Decatur Upstate Medical University @fomightez
Michał Krassowski Oxford @krassowski
Gayle Ollington NumFOCUS @gollington
Eric Gentry Anaconda @ericsnekbytes
Romeo Kienzler IBM (CODAIT) @romeokienzler
Isabela Presedo-Floyd Quansight Labs @isabela-pf

Plus one more.

Jupyter Community Call 04/26

Date: April 26, 2022, at 7am Pacific (in your timezone)

Discourse

YouTube recording

Please note:

• Community calls are recorded and posted to this playlist

• These notes will be recorded and posted here

• Everyone present is held to the Jupyter Code of Conduct

Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.

Short reports, celebrations, shout-outs

This is a place to make short announcements (without a need for discussion).

• Sarah Shout out to everyone who is here for handling time zones!
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https://github.com/markusschanta/awesome-jupyter
https://github.com/mauhai/awesome-jupyterlab
https://arewemeetingyet.com/Los%20Angeles/2022-04-26/7:00/Jupyter%20Community%20Call
https://discourse.jupyter.org/t/jupyter-community-calls/668
https://youtu.be/WDkudE2RvRk
https://www.youtube.com/playlist?list=PLUrHeD2K9Cmkoamm4NjLmvXC4Y6E1o8SP
https://jupyter.readthedocs.io/en/latest/community/community-call-notes/index.html
https://jupyter.org/conduct
https://discourse.jupyter.org/t/reviving-the-all-jupyter-team-meetings/423
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Agenda Items

• JupyterLab-LaTeX UX improvements PR Result of 2 semesters of work by Junior Design Capstone class team
from Georgia Tech done for client (Axle Informatics/NIH). Project included a user reasearch section which is
summarized in PR. New features highlights:

– Preview button

– Formatting buttons (bold, italic, underlined, subscript, superscript)

– Autocomplete for common LaTeX tags (i.e. \subsection)

– tikzplots templates

– Table creation helper

– Suggestion: UX to help with LaTeX install discovery, errors (even as documentation)

• JupyterLab-Git usability improvements 4 features added to JupyterLab-Git as a result of the 12-week Spring
2022 MLH Fellowship Open-Source Program. The majority of the work was done by Dat Quach and Zeshan
Fayyaz with help and feedback from Frédéric Collonval.

– Credential cache: save Git login credentials temporarily

– Commit diff: compare two arbitrary commits in the History panel

– Reset to remote: force reset a branch to match its remote tracking branch

– A warning for unsaved staged files: warn the user when there are unsaved changes on files that are in the
staged area

• Frederic

– Search and Replace across files extension (release in the coming week)

– GitHub repository

– Demo

∗ The extension is using a CLI tool called Ripgrep

∗ This limits the usage of the extension to contents served from a file system.

– Potential solutions for building index for other needs (like non OS filesystem) (thanks to Nick):

∗ https://whoosh.readthedocs.io/en/latest/intro.html

∗ https://pypi.org/project/lunr/

• Gayle - Jupyter Community Events Manager

– 4th Round of CFP for Jupyter Community Workshop

– Starting interviews for highlighted contributor write up in blog. If interested schedule time on calendar:
https://calendly.com/gayle-numfocus/30min?month=2022-04

• Steve

– New cookiecutter template for creating Jupyter Server Extensions

– We created it during the weekly Jupyter Server contributing hour

• Jason W

– Shout out for triage meetings! (Can be found on the Jupyter Community Calendar)

– Typically at 10:00 PDT, though not this week

– You can triage on your own: JupyterLab issues needing triage
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https://github.com/jupyterlab/jupyterlab-latex/pull/192
https://techstyle.lmc.gatech.edu/cs-tech-comm-junior-design-sequence/
https://github.com/jupyterlab/jupyterlab-git
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https://github.com/quachtridat
https://github.com/ZeshanFayyaz
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https://github.com/fcollonval
https://github.com/jupyterlab/jupyterlab-git/pull/1099
https://github.com/jupyterlab/jupyterlab-git/pull/1108
https://github.com/jupyterlab/jupyterlab-git/pull/1087
https://github.com/jupyterlab/jupyterlab-git/pull/1075
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https://github.com/BurntSushi/ripgrep
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Other Links Shared

This is a space to store links shared during community call discussions related to or separate from the agenda items.

• [lyx]https://www.lyx.org/

• https://github.com/BurntSushi/ripgrep

• https://whoosh.readthedocs.io/en/latest/intro.html

• https://pypi.org/project/lunr/

Attendees

Name Institution GitHub Handle
Konstantin Axle Informatics/NIH @ktaletsk
Dat Quach Major League Hacking (MLH) @quachtridat
Jason Weill AWS @jweill-aws
Sarah Gibson 2i2c @sgibson91
A. T. Darian QuantStack @afshin
Gayle Ollington NumFOCUS @gollington
Frederic Collonval QuantStack @fcollonval
Alex Bozarth IBM @ajbozarth
Steven Silvester MongoDB @blink1073
Chris Sewell EPFL @chrisjsewell
Wayne Decatur Upstate Medical Univ. @fomightez
Isabela Presedo-Floyd Quansight Labs @isabela-pf

Plus 1 more.

March 29, 2022

Date: March 29, 2022, at 8am Pacific (your timezone)

Discourse

There is no recording for this call.

Please note:

• Community calls are recorded and posted to this playlist

• These notes will be recorded and posted here

• Everyone present is held to the Jupyter Code of Conduct

3.4. Community 55

https://arewemeetingyet.com/Los%20Angeles/2022-03-29/8:00/Jupyter%20Community%20Call
https://discourse.jupyter.org/t/jupyter-community-calls/668
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Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.

Short reports, celebrations, shout-outs

This is a place to make short announcements (without a need for discussion).

• Zach voila-gridstack is great and Zach can’t wait for a release on PyPI sometime soon!

– viola-dashboards/voila #846 Switch to a lab-based app for the Voila frontend

Agenda Items

With time changes, this meeting was accidentally double-booked with the Jupyter Secuirty meeting! Since we had an
open agenda before the community call, our notes overlap with theirs.

For notes from this call, please refer to the March 29, 2022 jupyter/security meeting notes!

February 22, 2022

Date: February 22, 2022, at 8am Pacific (your timezone)

Discourse

YouTube link

Please note:

• Community calls are recorded and posted to this playlist

• These notes will be recorded and posted here

• Everyone present is held to the Jupyter Code of Conduct

Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.

Short reports, celebrations, shout-outs

This is a place to make short announcements (without a need for discussion).

• Isabela: Jupyter accessibility workshops are coming up in March. Sign up for the March 12 event. Sign up for
the March 19 event.

• Tony: We now have Jupyter triage meetings (on Thursdays). Find them on the community calendar

• Nick: flit 3.7.0 released, supports data_files for kernelspecs, extensions, etc.
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https://discourse.jupyter.org/t/reviving-the-all-jupyter-team-meetings/423
https://github.com/voila-dashboards/voila-gridstack
https://github.com/voila-dashboards/voila/pull/846
https://github.com/jupyter/security/tree/main/meetings/2022-03-29.md
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https://youtu.be/-_i1JTRnlXc
https://www.youtube.com/playlist?list=PLUrHeD2K9Cmkoamm4NjLmvXC4Y6E1o8SP
https://jupyter.readthedocs.io/en/latest/community/community-call-notes/index.html
https://jupyter.org/conduct
https://discourse.jupyter.org/t/reviving-the-all-jupyter-team-meetings/423
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https://hopin.com/events/jupyter-accessibility-workshop-auditing-in-open-source
https://hopin.com/events/jupyter-accessibility-workshop-auditing-in-open-source
https://docs.jupyter.org/en/latest/community/content-community.html#jupyter-community-meetings
https://flit.readthedocs.io/en/stable/history.html#version-3-7
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• @jasongrout: We are releasing RC prereleases of ipywidgets 8.0 and 7.7 very soon. Will announce on Jupyter
Discourse when it happens.

Agenda Items

• Ana Ruvalcaba/Gayle Ollington Introduction and welcome to Gayle, Community Events Manager for Project
Jupyter.

– Jupyter Community Building Committee Charter

– December 2021 Jupyter Community Update

• Frederic Collonval: WIP Jupyter styled components to speed up your dev.
Come as web components or React components and are ARIA compliant thanks to the underlying FAST Frame-
work.
Related JEP pre-proposal

– Question: will these be eventually used for ipywidgets? Answer: There hasn’t been a discussion yet, but it
is possible to make a new library (like the ones for Vue and Angular)

• Jeremy Tuloup, Nicholas Bollweg An embeddable REPL powered by JupyterLite, various updates (cache bust-
ing, slimer app, Pyodide 0.19)

• Tasko Olevski, Andreas Bleuler Amalthea - A Kubernetes operator for Jupyter Servers. Short introduction to
the project and its goals. Link to presentation

Other Links Shared

This is a space to store links shared during community call discussions related to or separate from the agenda items.

• Today’s date is an anagram! a 22-02-2022 tweet

• CarpenPi project

• mamba-org/quetz-frontend repository

• ipydrawio in JupyterLite

• tangle examples notebook in JupyterLite

• Renku
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https://discourse.jupyter.org/latest
https://discourse.jupyter.org/latest
https://jupyter.org/governance/communitybuildingcommittee.html
https://blog.jupyter.org/jupyter-community-2021-update-84c5cd3c5e75
https://jupyterlab-contrib.github.io/jupyter-ui-toolkit
https://explore.fast.design/
https://explore.fast.design/
https://github.com/jupyter/enhancement-proposals/issues/88
https://jupyterlite.readthedocs.io/en/latest/applications/repl.html
https://github.com/SwissDataScienceCenter/amalthea
https://docs.google.com/presentation/d/18DvgOFoJko2bd9Cvmd7sSLsV0jbacNPoUfpHtbapeMY/edit?usp=sharing
https://twitter.com/simongerman600/status/1495870748866621441
https://github.com/CarpenPi
https://github.com/mamba-org/quetz-frontend/pull/98
https://ipydrawio--92.org.readthedocs.build/en/92/_static/lab/index.html
https://pidgy.readthedocs.io/en/latest/_/retro/notebooks/index.html?path=tangle_examples.ipynb&amp;room=duck-day-wuack
https://renkulab.io/
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Attendees

Name Institution GitHub Handle
Jason Grout Databricks @jasongrout
Frederic Collonval QuantStack @fcollonval
Sarah Gibson 2i2c @sgibson91
David Brochart QuantStack @davidbrochart
Nick Bollweg Georgia Tech @bollwyvl @nrbgt
Simon Li University of Dundee @manics
tonyfast quansight @tonyfast
Tasko Olevski SDSC / ETH Zürich @olevski
Jeremy Tuloup QuantStack @jtpio
Simon Adorf EPFL @csadorf
Andreas Bleuler SDSC / ETH Zürich @ableuler
Zach Sailer Apple @Zsailer
Isabela Presedo-Floyd Quansight Labs @isabela-pf
Ana Ruvalcaba California Polytechnic State University @Ruv7
Gayle Ollington NumFOCUS

Plus 6 more

January 25, 2022

Date: January 25, 2022, at 8am Pacific (your timezone)

Discourse

YouTube link

Please note:

• Community calls are recorded and posted to this playlist

• These notes will be recorded and posted here

• Everyone present is held to the Jupyter Code of Conduct

Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.
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Short reports, celebrations, shout-outs

This is a place to make short announcements (without a need for discussion).

• Zach has a shout out! Hooray for these calls continuing into 2022!

• Tony: congrats to the team who made the first two Jupyter accessibility workshops happen in the last two weeks

• Steve: Shout out to Zach for being an early adopter of the new Jupyter governance process with jupyter-server!

• Tony: Shout out to Darian for sharing the Jupyter governance process changes with the whole community

• Tony: Great work to the Binder team for keeping Binder ready to go for the world.

• Tony: Thanks to everyone attending for keeping community calls running

• Zach: Cool demo on Twitter of MyST in a Jupyter notebook (this is later on the agenda)

Agenda Items

• MLflow Kernel Demo by Jitendra Pandey (jitendra@infinstor.com). MLflow Kernel connects to an MLflow
service and records all the data science activities in the Jupyter notebook as MLflow artifacts. It is open source
at infinstor/mlflow-kernel and Infinstor quickstart: mlflow kernel

• Demonstrations of Jupyter cache, JupyterLab MyST (and maybe PR to rewrite myst-nb)

Other Links Shared

This is a space to store links shared during community call discussions related to or separate from the agenda items.

• rst-to-myst

Attendees

Name Institution GitHub Handle
jitendra InfinStor InfinStor
Frederic Collonval QuantStack @fcollonval
Chris Sewell EPFL/EBP @chrisjsewell
Sarah Gibson 2i2c @sgibson91
Simon Li University of Dundee @manics
Rollin Thomas NERSC @rcthomas
Zach Sailer Apple @Zsailer
Adhitya Vadivel InfinStor @adhityav
Gabriel Fouasnon Quansight @gabalafou
Wayne Decatur Upstate Medical University @fomightez
tony fast Quansight @tonyfast
A. T. Darian Two Sigma @afshin
Isabela Presedo-Floyd Quansight Labs @isabela-pf

Plus 6 more
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https://github.com/infinstor/mlflow-kernel
https://www.infinstor.com/quickstart/mlflow-kernel.
https://jupyter-cache.readthedocs.io
https://github.com/executablebooks/jupyterlab-myst
https://github.com/executablebooks/MyST-NB/pull/380
https://github.com/executablebooks/rst-to-myst
https://www.infinstor.com/
https://www.infinstor.com/
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November 30, 2021

Date: Novermber 30, 2021, at 8am Pacific (your timezone)

Discourse

YouTube link

Please note:

• Community calls are recorded and posted to this playlist

• These notes will be recorded and posted here

• Everyone present is held to the Jupyter Code of Conduct

Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.

Short reports, celebrations, shout-outs

This is a place to make short announcements (without a need for discussion).

• @loichuder: Release 1.0.0 of jupyterlab-h5web bringing support for JLab3 as prebuilt extension

• @bollwyvl jupyterlite 0.1.0a17 speaks self-hosted/custom wheels and MathJax

– offline pyodide coming

∗ jupyter-server-proxy 3.2.0 including full control of request re-writing, sub-paths in Lab launchers

Agenda Items

• @ltetrel jupyter book workflow on NeuroLibre

– NeuroLibre Documentation (you are welcome to be an alpha tester!))

– This is the pull request for initContainer on binderhub. It should be already possible with Zero to Jupyter-
Hub singleuser.initContainers but not optimal (better to do our process once during build). The missing
piece is to give that initContainer an environment variable (as discussed on the github issue and Jupyter
discourse).

• @fcollonval WIP RISE in JupyterLab PR

To test the PR locally, here are the commands to execute:

yarn
yarn build
python3 -m pip install -e .
jupyter server extension enable --sys-prefix rise
jupyter serverextension enable --sys-prefix rise
jupyter labextension develop --overwrite .

• @afshin [DRAFT] Jupyter Enhancement Proposal (JEP) for Jupyter Notebook version 7
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https://github.com/damianavila/RISE/pull/605
https://github.com/jupyter/enhancement-proposals/pull/79
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– Also mentioned on the Jupyter Discourse

Other Links Shared

This is a space to store links shared during community call discussions related to or separate from the agenda items.

• The Journal of Open Source Software

• Comment on Jupyter Discourse post Feature Idea: JupyterHub/BinderHub + Jupyter Book as a publishing plat-
form

• Darian’s sweet potato pie recipe

• Cooking for Engineers

• jupyterlab/jupyterlab issue #10207 Side-by-side rendering

Comments

• Gabriel: being able to draw on the slides in Frederic’s demo (over the figures, charts) looked very cool to me

Attendees

Name Institution GitHub Handle
loic tetrel SIMEXP (UDEM) @ltetrel
jeremy ravenel Naas @jupyter-naas
Frederic Collonval QuantStack @fcollonval
Afshin T. Darian Two Sigma @afshin
Zach Sailer Apple @Zsailer
Sarah Gibson 2i2c @sgibson91
Martha Cryan IBM @marthacryan
Karla Spuldaro IBM @karlaspuldaro
Jessica Xu @jess-x

Nick Bollweg Georgia Tech @bollwyvl @nrbgt
Wayne Decatur Upstate Medical Univ. @fomightez
Dane Freeman Georgia Tech @dfreeman06
Gabriel Fouasnon Quansight Labs @gabalafou
Rollin Thomas NERSC @rcthomas
Loic Huder ESRF @loichuder
Isabela Presedo-Floyd Quansight Labs @isabela-pf

Plus 6 more
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https://discourse.jupyter.org/t/jep-draft-open-for-the-notebook-v7-transition/11769
https://joss.theoj.org/
https://discourse.jupyter.org/t/feature-idea-jupyterhub-binderhub-jupyter-book-as-a-publishing-platform/8359/3
https://discourse.jupyter.org/t/feature-idea-jupyterhub-binderhub-jupyter-book-as-a-publishing-platform/8359/3
https://food.darian.link/sweet-potato-pie/
http://www.cookingforengineers.com/
https://github.com/jupyterlab/jupyterlab/issues/10207
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October 26, 2021

Date: October 26, 2021, at 8am Pacific (your timezone)

Discourse

YouTube link

Please note:

• Community calls are recorded and posted to this playlist

• These notes will be recorded and posted here

• Everyone present is held to the Jupyter Code of Conduct

Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.

Short reports, celebrations, shout-outs

• Carol Thank you Zach for getting discussion started about Classic notebook and maintainer issues on GitHub.
:heart:

• Rollin Reminder that Jupyter security calls are on every other Friday (see community calendar)

• Many people Thank you Darian for years of sustained effort on improving governance!

Agenda Items

• Rollin Jupyter security group overview and updates

• Chris Executable book project updates

• Simon BinderHub updates

• Tony exploring a 7-year old notebook

• Zach exploring an 8-year old notebook

• Darian and Fernando Update on governance refactor - parts that are now active or coming.

– Relevant PR jupyter/governance #103

– Slides

62 Chapter 3. Table of Contents

https://arewemeetingyet.com/Los%20Angeles/2021-10-26/8:00/Jupyter%20Community%20Call
https://discourse.jupyter.org/t/jupyter-community-calls/668
https://youtu.be/ik2hG10GlE4
https://www.youtube.com/playlist?list=PLUrHeD2K9Cmkoamm4NjLmvXC4Y6E1o8SP
https://jupyter.readthedocs.io/en/latest/community/community-call-notes/index.html
https://jupyter.org/conduct
https://discourse.jupyter.org/t/reviving-the-all-jupyter-team-meetings/423
https://github.com/jupyter/notebook/issues/6210
https://jupyter.readthedocs.io/en/latest/community/content-community.html#jupyter-community-meetings
https://executablebooks.org/en/latest
https://github.com/jupyterhub/jupyterhub/blob/main/docs/source/changelog.md
https://github.com/jupyter/governance/pull/103
https://docs.google.com/presentation/d/1Soa1Cm23WmQ6KOUAvLXzXhe2aE7jmf3vdR84oTd7QPs/edit#slide=id.p
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Other Links Shared

This is a space to store links shared during community call discussions related to or separate from the agenda items.

• jupyterlab/jupyterlab #11079 Settings UI PR

• myst

• The Executable Book Project gallery

• Sphinx autoapi

• 2i2c

• San Diego Python Intro to Python

• Carol’s Journey to Jupyter slides

• papyri

• Carol’s JupyterHub “A Thing Explainer” slides

• https://abigayle-mercer.github.io/Jupyter/CH_3-1.html

• Jupyter governance office hours on the Jupyter Discourse

• Notebook Hall of Fame

Attendees

Name Institution GitHub Handle
Fernando Pérez UC Berkeley, Jupyter fperez
Simon Li University of Dundee @manics
Rollin Thomas NERSC @rcthomas
Carol Willing Noteable @willingc
Gabriel Fouasnon Quansight Labs gabalafou
Alex Bozarth IBM @ajbozarth
Karla Spuldaro IBM @karlaspuldaro
Chris Sewell Executablebooks @chrisjsewell
Jared Thompson Comcast @afonit
Loic Huder ESRF @loichuder
tonyfast quansight @tonyfast
Isabela Presedo-Floyd Quansight Labs @isabela-pf

Plus 4 more

September 28, 2021

Date: September 28, 2021, at 8am Pacific (your timezone)

Discourse

YouTube link

Please note:

• Community calls are recorded and posted to this playlist

• These notes will be recorded and posted here.
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https://github.com/jupyterlab/jupyterlab/pull/11079
https://myst-parser.readthedocs.io/
https://executablebooks.org/en/latest/gallery.html
https://sphinx-autoapi.readthedocs.io/
https://2i2c.org/
https://github.com/sandiegopython/intro-to-python
https://www.slideshare.net/willingc/journey-to-jupyter
https://github.com/Carreau/papyri
https://www.slideshare.net/willingc/jupyterhub-a-thing-explainer-overview
https://discourse.jupyter.org/t/governance-office-hours-meeting-minutes/1480/161
https://github.com/jennalandy/notebook-research/blob/master/analysis_notebooks/16_HallOfFame.ipynb
https://arewemeetingyet.com/Los%20Angeles/2021-09-28/8:00/Jupyter%20Community%20Call
https://discourse.jupyter.org/t/jupyter-community-calls/668
https://youtu.be/BZLM_clyHwo
https://www.youtube.com/playlist?list=PLUrHeD2K9Cmkoamm4NjLmvXC4Y6E1o8SP
https://jupyter.readthedocs.io/en/latest/community/community-call-notes/index.html
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• Everyone present is held to the Jupyter Code of Conduct

Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.

Short reports, celebrations, shout-outs

• Loïc Extensions for HDF5 files

– Release 1.0.0 for jupyterlab-hdf5 bringing support for JupyterLab 3

∗ :thumbsup: Thank You!!!

– Release 0.10.0 for jupyterlab-h5web removing big files limitation

Agenda Items

• Angus would like to introduce the prototype jupyterlab-imarkdown and discuss its wider implications.

• Rollin would like to share Jupyter security documentation review from Trusted CI

– The review doc from Kay Avila at Trusted CI: https://bit.ly/3ED0zbN

– https://discourse.jupyter.org/t/jupyter-security-related-documentation/10921

– Will be discussed at next few security meetings (every other Friday, see the Jupyter calendar for event)

– (Background: https://blog.jupyter.org/trusted-ci-cybersecurity-engagement-with-jupyter-859a5f5d7201)

• Rick would like to introduce a new extension and get feedback

• Theodore looking for links for good jupyter lab widgets dev tutorials and examples

Other Links Shared

This is a space to store links shared during community call discussions related to or separate from the agenda items.

• https://kidpix.app/
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https://jupyter.org/conduct
https://discourse.jupyter.org/t/reviving-the-all-jupyter-team-meetings/423
https://github.com/jupyterlab/jupyterlab-hdf5
https://github.com/silx-kit/jupyterlab-h5web
https://github.com/agoose77/jupyterlab-imarkdown/
https://discourse.jupyter.org/t/jupyter-community-calendar/2485
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Attendees

Name Institution GitHub Handle
Angus Hollands U Birmingham @agoose77
Rick McGeer engageLively @rickmcgeer
Chris Sewell EPFL / EBP @chrisjsewell
Sarah Gibson 2i2c @sgibson91
Simon Li University of Dundee @manics
Rollin Thomas NERSC @rcthomas
Wayne Decatur Upstate Medical University @fomightez
Karla Spuldaro IBM @karlaspuldaro
Joyce Er Microsoft @joyceerhl
Pete Blois Google @blois
Tony Fast Quansight @tonyfast
Alex Bozarth IBM @ajbozarth
Theodore Aptekarev @piiq
Loïc Huder ESRF @loichuder
Luciano Resende IBM @lresende
Jessica Xu Quansight @jess-x
Isabela Presedo-Floyd Quansight Labs @isabela-pf

Plus 5 others.

August 31, 2021

Date: August 31, 2021, at 8am Pacific (your timezone)

Discourse

YouTube link

Please note:

• Community calls are recorded and posted to this playlist

• These notes will be recorded and posted here

• Everyone present is held to the Jupyter Code of Conduct

Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.

3.4. Community 65

https://arewemeetingyet.com/Los%20Angeles/2021-08-31/8:00/Jupyter%20Community%20Call
https://discourse.jupyter.org/t/jupyter-community-calls/668
https://youtu.be/WQ43ywKDfg8
https://www.youtube.com/playlist?list=PLUrHeD2K9Cmkoamm4NjLmvXC4Y6E1o8SP
https://jupyter.readthedocs.io/en/latest/community/community-call-notes/index.html
https://jupyter.org/conduct
https://discourse.jupyter.org/t/reviving-the-all-jupyter-team-meetings/423
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Short reports, celebrations, shout-outs

• Rollin JupyterHub + HPC meeting tomorrow agenda, invite/link on the community calendar

• Rollin+Rick Jupyter Security Meetings, biweekly (Fridays, 9:00 AM PDT)

– Next call Sep 10

– Trusted CI Jupyter security docs review

• Mike: Translations for JupyterLab

– If you want to contribute translation is happening on https://crowdin.com/project/jupyterlab

Agenda Items

• Navinn would like to present the work done by the MLH Fellowship on the JupyterLab Git Extension.

• Mike will introduce early version of JupyterLab citation manager extension

• David would like to present the latest development in akernel: reactivity.

• Tony would like to share jupyterlab-markup and pidgy.

Other Links Shared

This is a space to store links shared during community call discussions related to or separate from the agenda items.

• Voila on hackernews!

• Some updates on JupyterLab translation based on new strings. Join us in translating on crowdin!

Attendees

Name Institution GitHub Handle
Frederic Collonval QuantStack @fcollonval
David Brochart QuantStack @davidbrochart
Thorin Tabor UCSD @tmtabor
Rick Wagner UCSD @rpwagner
Hamilton Ulmer Mozilla @hamilton
Rollin Thomas NERSC @rcthomas
Navinn Ravindaran MLH Fellowship @navn-r
Luciano Resende IBM @lresende
Nick Bollweg Georgia Tech @bollwyvl @nrbgt
Loïc Huder ESRF @loichuder
Isabela Presedo-Floyd Quansight Labs @isabela-pf
Michał Krassowski U Oxford @krassowski
Jessica Xu Quansight @jess-x

Plus 7 others.
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https://hackmd.io/r4AuJjSpSoeTw_Br8dgMRA
https://discourse.jupyter.org/t/jupyter-community-calendar/2485
https://fellowship.mlh.io/
https://github.com/krassowski/jupyterlab-citation-manager
https://github.com/davidbrochart/akernel
https://github.com/agoose77/jupyterlab-markup
https://github.com/deathbeds/pidgy
https://news.ycombinator.com/item?id=28364923
https://crowdin.com/project/jupyterlab
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July 27, 2021

Date: July 27, 2021, at 8am Pacific (your timezone)

Discourse

YouTube Link

Please note:

• Community calls are recorded and posted to this playlist

• These notes will be recorded and posted here

• Everyone present is held to the Jupyter Code of Conduct

Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.

Short reports, celebrations, shout-outs

• Michael Milligan For cluster/scheduler users, batchspawner and related wrapspawner had new releases recently

• Steve JupyterLab 3.1 release

• Rick Globus Groups support in OAuthenticator

• Simon mybinder.org no longer blocking public cloud requests (Resolves this issue.)

• Nick jupyter-videochat 0.6.0 release is coming up, adds support for JupyterLite and RetroLab (needs config
:blush:)

• Nick jupyterlite 0.1.0a6 is out, with some improved support for python kernel parity and deploying in-
development lab extensions

Agenda Items

• Matthias would like to talk about kernel management and parametrisation.

– You can have a look at prototype/in progress repo – in need of a better name

– I’ll point out the work of Eric Charles and Kevin Bates as well.

• Matthias For cluster/scheduler user, show inplace_restarter,.

• Rick & Rollin discuss Jupyter Security Best Practices Community Workshop old thread and new thread

– Matthias Better process for CVE. We’ll have two soon. How do we coordinate release, response and co.

• David would like to present a new asynchronous Python Jupyter kernel.
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https://arewemeetingyet.com/Los%20Angeles/2021-07-27/8:00/Jupyter%20Community%20Call
https://discourse.jupyter.org/t/jupyter-community-calls/668
https://youtu.be/ebUXrmRfkM8
https://www.youtube.com/playlist?list=PLUrHeD2K9Cmkoamm4NjLmvXC4Y6E1o8SP
https://jupyter.readthedocs.io/en/latest/community/community-call-notes/index.html
https://jupyter.org/conduct
https://discourse.jupyter.org/t/reviving-the-all-jupyter-team-meetings/423
https://pypi.org/project/batchspawner/
https://pypi.org/project/wrapspawner/
https://github.com/jupyterhub/mybinder.org-deploy/issues/1828
https://github.com/jupyterlab-contrib/jupyter-videochat/tree/develop
https://github.com/jupyterlite/jupyterlite/releases/tag/v0.1.0a6
https://github.com/Quansight/ksmm
https://github.com/jupyter/jupyter_client/pull/612#issuecomment-886686237
https://pypi.org/project/inplace_restarter/
https://discourse.jupyter.org/t/jupyter-security-best-practices-workshop/1496
https://discourse.jupyter.org/t/jupyter-security-workshop-progress/9370
https://github.com/davidbrochart/akernel
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Other Links Shared

This is a space to store links shared during community call discussions related to or separate from the agenda items.

• https://github.com/deathbeds/hourhaus - beefy binder with rtc and jupyter-videochat

• Textual

• Jupyter community calendar

• Enarx

• NSF Secure and Trustworthy Cyberspace

• Jupyter Security Best Practices Workshop (2019)

• Jupyter Security Workshop Progress 2021

• Google Bug Hunters

• Eager Award

• ipydrawio

• Exploring and defining UX expectations for a RTC enabled multi-user environment (like JupyterHub)

• rtc in jupyterlite

• hedgedoc vs yjs (hackmd is the SaaS hedgedoc)

Attendees

If you are joining the Jupyter Community Call, sign in below so we know who was here.

Name Institution GitHub Handle
Matthias Quansight/Jupyter @Carreau
Thorin UCSD @tmtabor
Anton TU Delft @akhmerov
David QuantStack @davidbrochart
Michael University of Minnesota @mbmilligan
Rick UCSD @rpwagner
Nick Georgia Tech @nrbgt @bollwyvl
Wayne Decatur Upstate Medical University @fomightez
Simon Li University of Dundee @manics
Isabela Presedo-Floyd Quansight Labs @isabela-pf
Tony Fast Quansight @tonyfast

Plus 9 others
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https://github.com/willmcgugan/textual
https://jupyter.readthedocs.io/en/latest/community/content-community.html#jupyter-community-meetings
https://github.com/enarx/enarx
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504709
https://discourse.jupyter.org/t/jupyter-security-best-practices-workshop/1496
https://discourse.jupyter.org/t/jupyter-security-workshop-progress/9370
https://bughunters.google.com/about/patch-rewards
https://www.nsf.gov/pubs/policydocs/pappguide/nsf09_1/gpg_2.jsp#IID2
https://github.com/deathbeds/ipydrawio
https://github.com/jupyterlab/jupyterlab/issues/10119
https://github.com/jupyterlite/jupyterlite/blob/d0aafc4a697a814c21f9412546a20e1b36ad4e0f/packages/application-extension/src/index.tsx#L44
https://github.com/hedgedoc/hedgedoc/issues/527
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June 29, 2021

Date: June 29, 2021, at 8am Pacific (your timezone)

Discourse

Youtube Link

Please note:

• Community calls are recorded and posted to this playlist

• These notes will be recorded and posted here

• Everyone present is held to the Jupyter Code of Conduct

Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.

Short reports, celebrations, shout-outs

• Frederic

– Plotly v5 is out (actually v5.1 has been released yesterday): update to plotly.js v2, federated extension,
single extension, lazy load plotly.js - full changelog.

– JupyterLab v3.1 beta 0

• Isabela Scipy Tools Plenary session at SciPy 2021 discussion is still available for potential project updates.

• Nick (or Jeremy :heart:) jupyterlite 0.1.0a1 is up on PyPI for building your own sites with a doit-
powered CLI. Works with many ipywidgets, including plotly 5.x

• Kevin Kernel Provisioning pull request in jupyter_client is ready for review

• Loïc jupyterlab-h5web 0.0.8 release landing this week bringing support of HDF5 external link and compression

• Nick (or Mike :heart:) JEP-72: LSP integration is in PR

• Matt Sealnbconvert 6.1.0 was released last week. Proposal: Transmit Cell Metadata #70

Agenda Items

• Eduardo Blancas Short introduction to Ploomber, an open-source library to build data pipelines with Jupyter

• :bird: pidgy demo
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https://arewemeetingyet.com/Los%20Angeles/2021-06-29/8:00/Jupyter%20Community%20Call
https://discourse.jupyter.org/t/jupyter-community-calls/668
https://youtu.be/-aQFh8rjcdA
https://www.youtube.com/playlist?list=PLUrHeD2K9Cmkoamm4NjLmvXC4Y6E1o8SP
https://jupyter.readthedocs.io/en/latest/community/community-call-notes/index.html
https://jupyter.org/conduct
https://discourse.jupyter.org/t/reviving-the-all-jupyter-team-meetings/423
https://github.com/plotly/plotly.js/blob/master/CHANGELOG.md#210----2021-06-18
https://github.com/plotly/plotly.py/releases/tag/v5.0.0
https://github.com/jupyterlab/jupyterlab/releases/tag/v3.1.0b0
https://discourse.jupyter.org/t/scipy-tools-plenary-session-at-scipy-2021/9567
https://pypi.org/project/jupyterlite/0.1.0a1/
https://jupyterlite.readthedocs.io/en/latest/cli.html
https://github.com/jupyter/jupyter_client/pull/612
https://github.com/silx-kit/jupyterlab-h5web
https://github.com/jupyter/enhancement-proposals/pull/72
https://nbconvert.readthedocs.io/en/latest/changelog.html
https://github.com/jupyter/enhancement-proposals/pull/70
https://github.com/ploomber/ploomber
https://github.com/deathbeds/pidgy/
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Other Links Shared

• http://worrydream.com/Tangle/

• https://dagster.io/

• https://github.com/deathbeds/XlbsOSh_t

• https://mybinder.org/v2/gh/deathbeds/pidgy/new-parser

• https://twitter.com/CarlosHerreroB/status/1409616391527931906

Attendees

Name Institution GitHub Handle
Frederic Collonval QuantStack @fcollonval
Eduardo Blancas Ploomber @edublancas
Nick Bollweg Georgia Tech @bollwyvl @nrbgt
Paige Bailey Microsoft @dynamicwebpaige
Steven Silvester Apple @blink1073
Hamilton Ulmer Mozilla @hamilton
Carol Willing Jupyter, Noteable @willingc
Matthew Seal Noteable @mseal
Claudia Regio Microsoft @claudiaregio
Ian Huff Microsoft

Alex Bozarth IBM @ajbozarth
Ryan Spencer Georgia Tech @ryspnc
Loic Huder ESRF @loichuder
A. T. Darian Two Sigma @afshin
Wayne Decatur Upstate Medical @fomightez
Michał Krassowski @krassowski

Luciano Resende IBM @lresende
Kiersten Stokes IBM @kiersten-stokes
Tony Fast Quansight @tonyfast
Isabela Presedo-Floyd Quansight Labs @isabela-pf

May 25, 2021

Date: May 25, 2021, at 8am Pacific (your timezone)

Discourse YouTube Link

Please note:

• Community calls are recorded and posted to this playlist

• These notes will be recorded and posted here

• Everyone present is held to the Jupyter Code of Conduct
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https://arewemeetingyet.com/Los%20Angeles/2021-05-25/8:00/Jupyter%20Community%20Call
https://discourse.jupyter.org/t/jupyter-community-calls/668
https://youtu.be/g9WrS4FlkeM
https://www.youtube.com/playlist?list=PLUrHeD2K9Cmkoamm4NjLmvXC4Y6E1o8SP
https://jupyter.readthedocs.io/en/latest/community/community-call-notes/index.html
https://jupyter.org/conduct
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Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.

Short reports, celebrations, shout-outs

• Darian Congratulations to the 2020 cohort of Jupyter Distinguished Contributors!

• Nick ipydrawio 1.1.0 just dropped: now has the sketch theme, a Custom Diagram. . . Launcher which offers
all of the (extensible) templates. Also docs.

• Steve JupyterLab 3.1.0a9 is now available with Real Time Collaboration (RTC)! To use:

– Install

∗ pip install -U --pre jupyterlab or

∗ conda install -c conda-forge -c conda-forge/label/jupyterlab_alpha
jupyterlab=3.1.0a9

– Usage

∗ jupyter lab --collaborative or

∗ Jupyter settings: {"LabApp": {"collaborative": true, "expose_app_in_browser":
true}}

• Isabela Congratulations to all the community members who submitted CZI grant proposals last week! Thank
you for your hard work.

Agenda Items

• Tony Fast Searching notebooks

• RTC Demo with Live Binder (temporary link given in Zoom Chat, based on Michał’s example). There is a
“Share” top level menu item you can use to create the shareable link.

• Nick Learning with flashcards about. . . stuff?

Other Links Shared

• https://github.com/jupyterlab/jupyterlab/blob/master/binder/start

• https://github.com/davidbrochart/jupyterlab-auth

• https://github.com/jtpio/jupyterlite/pull/89

• https://github.com/gt-coar/janki
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https://discourse.jupyter.org/t/reviving-the-all-jupyter-team-meetings/423
https://blog.jupyter.org/congratulations-distinguished-contributors-149deff3033c
https://github.com/deathbeds/ipydrawio/releases/tag/v1.1.0
https://ipydrawio.rtfd.io
https://github.com/jupyterlab/jupyterlab/releases/tag/v3.1.0a9
https://mybinder.org/v2/gh/krassowski/jupyterlab-demo/rtc-demo?urlpath=lab
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Attendees

Institution Name GitHub Handle
University of Southern California Dhrithi Deshpande @dhrithideshpande
Openteams Eskild Eriksen @iameskild
Two Sigma Afshin T. Darian @afshin
Georgia Tech Nick Bollweg @bollwyvl
Microsoft Joyce Er @joyceerhl
Microsoft Claudia Regio @claudiaregio
Microsoft Paige Bailey @dynamicwebpaige
UCSD Thorin Tabor @tmtabor
Alan Turing Institute Sarah Gibson @sgibson91
QuantStack Frederic Collonval @fcollonval
Quansight Mars Lee @marsbarlee
Jupyter/Noteable Carol Willing @willingc
QuantStack Jeremy Tuloup @jtpio
QuantStack David Brochart @davidbrochart
Apple Steven Silvester @blink1073
Apple Zach Sailer @Zsailer
Quansight Tony Fast @tonyfast
Quansight Labs Isabela Presedo-Floyd @isabela-pf
uPlanner Sebastian Flores @sebastiandres

April 27, 2021

Date: April 27, 2021, at 8am Pacific (your timezone)

Discourse:

Youtube Link

Please note:

• Community calls are recorded and posted to this playlist

• These notes will be recorded and posted here

• Everyone present is held to the Jupyter Code of Conduct

Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.
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Short reports, celebrations, shout-outs

• Loïc Huder New release of jupyterlab-h5web that brings HDF5 file exploration and visualization to the notebook.

• Isabela Presedo-Floyd As always, if anyone is interested in hosting, co-hosting, or getting involved with planning
a community call, please reach out to me.

Agenda Items

• Jeremy:

– JupyterLite, a JupyterLab distribution that runs entirely in the browser

– Many thanks to Nick!

– Try it online: https://jupyterlite.readthedocs.io/en/latest/_static/lab/index.html

• Gonzalo Internationalization workflow for extension developers

– Some feedback. . . :man-facepalming:

∗ “As I see, there is a delay with the creation and publishing of language packs. We use Jupyter Lab
as a base for one of our products and we are interested in using language lacks in it (especially Chi-
nese and Japanese. What is the reason for the delay and is it possible to help the project somehow?
We are interested in contributing to the Jupyter Lab project in many domains, for example, sofrware
development, testing and translation.”

– Releasing language packages :world_map::card_file_box:

∗ Current packages and state (showing first 10)

∗ Releasing Spanish and Chinese simplified today evening. :eyes:

∗ Please attend the JLab dev meeting for more information on the internal process for managing the
translations and language packs.

– Resources :books:

1. Example PR to internationalize your extension adding internationalization to Jupyterlab-Git extension.

2. Yaml File to update on the language packs centralized repo to update on the language packs repository.

3. Language packs repository.

4. Start translating on Crowdin
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5. JupyterCON slides - [Video]

• David:

– Nbterm

∗ Blog: Jupyter Notebooks in the terminal

∗ Github Repository

Other Links Shared

This is a space to store links shared during community call discussions related to or separate from the agenda items.

• https://github.com/jupyterlab/jupyterlab-hdf5

• https://github.com/jtpio/jupyterlite/issues/41

• https://deathbeds.github.io/jyve/lab/

• https://github.com/capytale/capytale

Attendees

Name Institution GitHub Handle
A. T. Darian Two Sigma @afshin
Layne Sadler AIQC @aiqc
Sylvain Corlay QuantStack @SylvainCorlay
Loïc Huder ESRF @loichuder
Claudia Regio @Microsoft @claudiaregio
Joyce Er @Microsoft @joyceerhl
Jeremy Tuloup @QuantStack @jtpio
Steven Silvester @Apple @blink1073
Zach Sailer @Apple @Zsailer
Gonzalo Peña-C. @Quansight @goanpeca
Damián Avila MADS & 2i2c @damianavila
Pete Blois Google @blois
Marvin Kastner Hamburg University of Technology @1kastner
David Brochart QuantStack @davidbrochart
Tony Fast Quansight @tonyfast
Isabela Presedo-Floyd Quansight Labs @isabela-pf
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March 30th, 2021

Date: March 30, 2021, at 8am Pacific (your timezone)

Discourse:

Youtube Link

Please note:

• Community calls are recorded and posted to this playlist

• These notes will be recorded and posted here

• Everyone present is held to the Jupyter Code of Conduct

Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.

Short reports, celebrations, shout-outs

• Isabela Presedo-Floyd Congrats to anyone who started the cycle 4 CZI EOSS grant application process! We
have several in the community.

• Nick B jupyter-starters 1.0.2

• Carol W Darian for his work on the Jupyter Distinguished Contributors.

Agenda Items

• Nick B. Has anyone done if this then that in a JupyterHub?

– General answer is no

– Something like https://github.com/huginn/huginn?

– For background, this is https://ifttt.com/

– Use cases

• Tony Fast schemata library (future traits library that complies more with JSON schema than traitlets)

– Goal of having types being able to describe themselves. This is a work in progress for IPython.

– Creates different types of interactive notebook outputs following JSON standards that can allow them to
interact with more backends.

• Favorite notebooks/binders/plugins

– Simon Li Unexpected use of binder https://github.com/jupyterhub/jupyter-remote-desktop-proxy/

– Can you run JupyterHub inside mybinder https://gist.github.com/manics/cd04d42b211dfd6240430ee33349cd49

• Tony Fast https://nbviewer.jupyter.org/github/deathbeds/deathbeds.github.io/blob/master/deathbeds/2018-07-
31-Testing-notebooks.ipynb

– https://github.com/jennalandy/notebook-research/blob/master/analysis_notebooks/16_HallOfFame.ipynb
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• Nick B. https://gist.github.com/bollwyvl/7a128978b8ae89ab02bbd5b84d07a4b7

– Can we round-trip LaTeX to SymPy https://github.com/bollwyvl/sympy-latex-
hypothesis/blob/master/Hypothesize.ipynb

• Carol Willing https://github.com/moorepants/pydy-tutorial-human-standing

Other Links Shared

This is a space to store links shared during community call discussions related to or separate from the agenda items.

• https://w3c.github.io/annotation-aria/

• http://507movements.com/

• http://rescience.github.io/ten-years/

• https://web.mit.edu/music21/

• https://pockit.ai/

• https://www.dexterindustries.com/gopigo3/

Attendees

Name Institution GitHub Handle
Frédéric Collonval ARIADNEXT @fcollonval
Simon Li University of Dundee @manics
Carol Willing Jupyter @willingc
Nick Bollweg Jupyter, GaTech @bollwyvl @nrbgt
Pierre-Olivier Simonard Quansight @pierrotsmnrd
Fatma Tarlaci OpenTeams @ftarlaci
Pete Blois Google Colab @blois
Isabela Presedo-Floyd Quansight Labs @isabela-pf

February 23rd, 2021

Date: February 23, 2021, at 9am Pacific (your timezone)

Discourse:

Youtube Link

Please note:

• Community calls are recorded and posted to this playlist

• These notes will be recorded and posted here

• Everyone present is held to the Jupyter Code of Conduct
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Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.

Short reports, celebrations, shout-outs

• Nick B: Are you excited by. . . JS license compliance? Feedback welcome on lab#9779 (screenshot)!

• Nick B: The latest Lab RTC PR (demo) is !

• Isabela Presedo-Floyd: If you are interested in helping run or host a community call, let me know (you won’t
have to do it alone :sunflower:)!

• Mike: pyls fork python-ls in cooperation with the Spyder team; preview of the changes to come in my personal
fork (fast and more clever autocompletion for jupyterlab-lsp!)

• Matt S: testbook had a talk at PyCascades around unittesting Jupyter Notebooks.

Agenda Items

• Loic Huder: short presentation of jupyter-h5web, a JLab extension to explore/visualize HDF5 files

• Jagane Sundar: short presentation of InfinStor’s free hosted Jupyterhub service (https://infinstor.com), a Cloud
hosted free Jupyterhub - our Jupyterhub service is free, you pay for Jupyterlab instance resources consumed

• Frédéric Collonval: short presentation of papermill_report. JupyterHub service to generate report from note-
books combining papermill and nbconvert.

• Nick B: demo of ipydrawio ( with of @quantstack/jupyterlab-drawio), the full diagrams.net UI (with all plugins,
themes, shapes. . . ) for Lab 3. Supports *.{ipynb,drawio,png,svg} (plus .pdf, sorta)

Other Links Shared

This is a space to store links shared during community call discussions related to or separate from the agenda items.

• agenda from 1/26 (last time)

• h5web

– based on same backend as other hd5f extension, will share more code in the future

∗ other one’s based on lumino datagrid

· merged cells would be awesome

– keras: export neural network weights as hdf5, potential use case

– xray community currently

∗ viewer should work for all formats

– drug discovery

– preventing jlab from sending all the data

∗ quick fix: filetype base64 to just send a little data (custom contentsmanager?)

∗ would prefer basically no data. . .

3.4. Community 77

https://discourse.jupyter.org/t/reviving-the-all-jupyter-team-meetings/423
https://github.com/jupyterlab/jupyterlab/pull/9779
https://user-images.githubusercontent.com/45380/108773016-c25f4880-752b-11eb-945c-32a20f2133b3.png
https://github.com/jupyterlab/jupyterlab/pull/9785
https://mybinder.org/v2/gh/QuantStack/jupyterlab/yjupyter?urlpath=lab-dev
https://github.com/python-ls/python-ls
https://github.com/krassowski/python-language-server
https://github.com/krassowski/python-language-server
https://github.com/krassowski/jupyterlab-lsp
https://testbook.readthedocs.io/
https://github.com/silx-kit/jupyterlab-h5web
https://github.com/ariadnext/papermill_report
https://papermill.readthedocs.io/en/latest/
https://github.com/ariadnext/papermill_report/blob/master/nbconvert.readthedocs.io
http://mybinder.org/v2/gh/deathbeds/ipydrawio/master?urlpath=lab/tree/docs/Poster.dio.svg
https://github.com/deathbeds/ipydrawio
https://github.com/QuantStack/jupyterlab-drawio
https://https://www.diagrams.net/
https://hackmd.io/l2yBruUATC6yH4F2gOUPgw
https://github.com/jupyterlab/lumino/pull/124
https://keras.io/api/models/model_saving_apis/
https://academic.oup.com/bioinformatics/article/35/8/1427/5094509


Jupyter Documentation, Release 4.1.1 alpha

• infinistor product

– hub

∗ custom spawner/authenticator (FOSS tbd)

· didn’t want existing spawner (container/k8s)

· vm interface granular enough

· stoppable machines for lower idle cost

· requires infinistor

· aws auth

· token refreshing

∗ hub runs on infinistor

∗ spawns in your own aws, shutdown on 15m of idle

∗ stock Lab, BYO extensions

∗ custom tool for extensions

· snapshots

∗ dashboard

∗ s3 storage

∗ users

∗ multicloud (aws, azure)

∗ customize the python kernel?

· in backend, have transforms, use dockerfile, modify dockerfile

· stock open source distributions (pip, conda)

• show and tell on discourse

• papermill_report

– speaks python (other libraries could be added)

– install as a service on hub

– pick notebook

– fill out form from papermill

– click button, get report

– shareable url

– if break, get full traceback

– click to get annotated notebook report

– next time: integration testing jupyterlab, screenshots w/ playwright, etc.

– papermill inspect added for this purpose, first example of using in FOSS

– multi-step wizard?

∗ schedulers

· cylc
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· dagster

· prefect

– hiding code?

∗ nbconvert (use tags?)

∗ preprocessors

∗ all standard stuff

• ipydrawio

– nb: most important takeaway: write the mimerenderer first, then it’s easier to write a wid-
get/document

– More draw.io features available in notebooks

Attendees

Name Institution GitHub Handle
Jagane InfinStor, Inc. @jagane-opensource
Loïc Huder ESRF @loichuder
Frédéric Collonval ARIADNEXT @fcollonval
Layne Sadler AIQC @aiqc
Nick Bollweg GTRI, Project Jupyter @nrbgt @bollwyvl
Isabela Presedo-Floyd Quansight Labs @isabela-pf
M. Krassowski (Mike) UOxf (on own behalf) @krassowski
Simon Li University of Dundee @manics
Dan Lester Ideonate @danlester
Wayne Decatur Upstate University @fomightez
Michael Milligan MSI @ U of Minnesota @mbmilligan
Matthew Seal Noteable, Inc @mseal
Jose Ferro. EPO (www.epo.org) @joseberlines
Marvin Kastner Hamburg University of Technology @1kastner
Zach Sailer Apple @Zsailer
A. T. Darian Two Sigma @afshin
W Stein CoCalc @williamstein
Raja Rajendran InfinStor, Inc. @software-artisan
Adhitya Vadivel InfinStor, Inc. @adhityav
Jeremy Tuloup QuantStack @jtpio
Steven Silvester Apple @blink1073
Safia Abdalla Microsoft, nteract @captainsafia
Shelby Sturgis Netflix @stormpython
Pete Blois Google @blois
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Jupyter Community Call

January 26th, 2021

Date: January 26, 2021, at 9am Pacific (your timezone)

Discourse

YouTube Link

Please note:

• Community calls are recorded and posted to this playlist

• These notes will be recorded and posted here

• Everyone present is held to the Jupyter Code of Conduct

Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.

Short reports, celebrations, shout-outs

This is a place to make short announcements (without a need for discussion).

• Frédéric Collonval To improve visibility and group volunteer time on maintenance of popular JupyterLab ex-
tensions, a unofficial GitHub organization has been created: jupyterlab-contrib.

• Isabela Presedo-Floyd In case you missed it, JupyterLab 3.0 is out! Congrats to the community and thanks for
all the hard work that went into this release.

• Isabela Presedo-Floyd I’ve seen a resurgence of community interest in making multiple Jupyter projects acces-
sible. This is awesome! We also have a group of people meeting every other week to coordinate JupyterLab
accessibility work (and talk about accessibility in general) that you can join from the community calendar.

• Layne Sadler Plotly updated jupyter-dash labextension for 3.0 and vows to prebuild. issue

Agenda Items

• Nick Bollweg jupyterlab-lsp 3.2 on pypi& conda-forge. JupyterLab :three:. :eight: Language Client features.
Ju(lia)+Py(thon)+R Language Servers+Kernel+Notebook, plus more. Pre-JEP Issue to move towards an official
sub-project .

• Nick Bollweg (or someone better :muscle:) JupyterLab 2.3.0rc0 is a performance-focused prerelease, on
pypi/conda-forge, these features will land in 3.1. Ready for testing!

• Frédéric Collonval: Leverage JupyterLab modularity to customize the UI with a alternative launcher and a cell
toolbar - demonstrate easier distribution thanks to JLab3.

• Corentin Cadiou: presentation of ipysphaghetti (name not settled yet) a JLab (3+) extension implementing a
node-based approach to interact with your data.

• Thorin Tabor: Notebook Projects, a mechanism for encapsulating multiple user environments in a JupyterHub
instance
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Other Links Shared

• Take the Jupyter survey!

• some nteract links after @raman’s pre-demo:

– https://docs.nteract.io/getting-started-with-nteract/

– https://github.com/nteract/nteract

• semi-related “instant-on” compute/notebooks

– jyve, static JupyterLab build

– pyodide, full CPython in the browser

• hackmd’s FOSS flavor is now HedgeDoc

– we need a Hub/Lab Extension :hedgehog:

• “run cells with tags”

– from cell-toolbar demo

– could this be supported in multiple clients, e.g. JupyterLab Notebook UI and nbclient/nbconvert CLI

• workflows with (some) Jupyter integration

– cylc

– dask

– dagster (binder)

– openmdao

– prefect

• GenePattern and GenePatternNotebook

• Integrative Genetics Viewer and their Jupyter extension

Q/A

As a company, how do we start contributing?

• @willingc follow the projects that seem most within your team’s wheelhouse

– Visit the Jupyter Discourse and community calendar!

• @jasongrout JupyterLab 4.0 release plans are underway. There may be items there, or things you
want to contribute.

– translations always welcome! Check CrowdIn for more info.

– corporate guidance

– team compass is where many of these larger discussions may happen.

• @jupyter/notebook is very starved for resources

– has a weekly meeting just trying to keep the issue count down.

∗ many are low-touch to at least get triaged

– really any help welcome

• @isabela-pf accessibility on all projects.
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– We have been starting with JupyterLab Components, etc. Notes for our meetings and all current
team work live in this issue

– And documentation in pydata-sphinx-theme (upstream of jupyter-book, etc.)

What would you like to see in community calls?

• Overview of JupterLab 3

Attendees

Name Institution GitHub Handle
Ross Stokoe Refinitiv @RR11WK
Julien Hoarau Refinitiv @julienhoarau
Greg Olmstead Refinitiv @maynardflies
Josias De Lima Refinitiv @JoshDL
Loic Huder ESRF @loichuder
Thorin Tabor UCSD @tmtabor
Gonzalo Gasca Meza Google @gogasca
Frédéric Collonval ARIADNEXT @fcollonval
Layne Sadler free agent @aiqc
Corentin Cadiou University College London @cphyc
Nick Bollweg Proj. Jupyter, GTRI, Deathbeds @bollwyvl @nrbgt @deathbeds
Wayne Decatur Upstate Medical Universtity @fomightez
Zach Sailer Apple @Zsailer
Simon Li University of Dundee @manics
Raman Tehlan nteract, StockGro @ramantehlan
Pete Blois Google Colab @blois
Ryan Spencer GTRI @ryspnc
A. T. Darian Two Sigma @afshin
Carol Willing Noteable / Jupyter @willingc
Karla Spuldaro IBM @karlaspuldaro
Martha Cryan IBM @marthacryan
Isabela Presedo-Floyd Quansight Labs @isabela-pf

Jupyter Community Call December 15th, 2020

Date: December 15, 2020, at time 9am Pacific (your timezone)

Discourse YouTube Link

Please note:

• Community calls are recorded and posted to this playlist

• These notes will be recorded and posted here

• Everyone present is held to the Jupyter Code of Conduct
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Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.

Short reports, celebrations, shout-outs, PR of the month

This is a place to make short announcements (without a need for discussion).

• Accessibility testing for docs - Nick

– WIP PR to show a way forward to establish and maintain an accessibility roadmap for Sphinx-based doc-
umentation sites

• jupyter-starters 0.6.0a0 released - Nick

– a tool for defining JSON Schema-based workflows in JupyterLab

• Thanks to everyone who gave feedback on last month’s call! - Isabela

• Check out @jtp’s repos for Jupyterlab-Classic and the p5js notebook. I’m looking forward to sharing with
students and teachers at Playfest conference in January. - Carol

• Jupyter survey is now live! Read more and take the survey. - Isabela

Agenda Items

Add agenda items here before the meeting. We will reorganize the agenda so that it fits in the 60m meeting
slot.

• WXYZDVCS Work-in-progress report on wxyz.dvcs, a bridge from Jupyter Widgets to distributed version
control - Nick

– Hopefully released this week , ![Launch Binder] works though!

• Pierre’s notebooks for teaching Python and data science

• JupyterLab Classic - Jeremy

Other Links Shared

This is a space to store links shared during community call discussions related to or separate from the agenda items.

• deathbeds/importnb

• mwouts/jupytext

• QuantEcon MATLAB-Python-Julia Cheatsheet

• SQLite Jupyter kernel

• 2i2c (brought up around support for JuptyerHubs in education)

• p5 notebook example (mentioned when talking about JupyterLab Classic)
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Attendees

Name Institution GitHub Handle
Nick Bollweg Project Jupyter, GTRI, Deathbeds @bollwyvl @nrbgt
Steven Silvester Apple @blink1073
Ryan Spencer GTRI @ryspnc
Simon Li University of Dundee @manics
Wayne Decatur Upstate Medical University @fomightez
Pete Blois Google Colab @blois
Pierre-Olivier Simonard Quansight @pierrotsmnrd
Ryan C. Cooper University of Connecticut @cooperrc
Raman Tehlan nteract @ramantehlan
A. T. Darian Two Sigma @afshin
Jeremy Tuloup QuantStack @jtpio
Damián Avila UMSI-MADS @damianavila
Tim George Freelance @tgeorgeux
Gonzalo Peña-Castellanos Quansight @goanpeca
Zach Sailer Apple @Zsailer
Carol Willing Jupyter, noteable @willingc
Sarah Gibson The Alan Turing Institute @sgibson91
Sharan Foga None @sharanf
Tania Allard – @trallard
Tony Fast Quansight @tonyfast
Isabela Presedo-Floyd Quansight Labs @isabela-pf

Jupyter Community Call

November 17th, 2020

Date: November 17th, 2020, at 9am Pacific (your timezone)

Discourse

Youtube Link

Please Note:

• Community calls are recorded and posted to this playlist

• These notes will be recorded and posted here

• Everyone present is held to the Jupyter Code of Conduct

Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.
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Short reports, celebrations, shout-outs

This is a place to make short announcements (without a need for discussion).

• Zach Shout out to Isabela for reviving the Jupyter Community Calls :tada:

Agenda Items

Add agenda items here before the meeting. We will reorganize the agenda so that it fits in the 60m meeting slot.

• IPyElk 0.2.0

– Jupyter Widgets for interactive graphs at scale powered by the Eclipse Layout Kernel (ELK),
sprotty, networkx.

• dgaf (deathbeds generalized automation framework)

• Eric What is a Jovyan?

Attendees

Name Institution GitHub Handle
Nick Bollweg Jupyter, Deathbeds, GTRI @bollwyvl @nrbgt
tony fast @deathbeds

Eric Charles Datalayer, Quansight @echarles
Isabela Presedo-Floyd Quansight @isabela-pf
Zach Sailer Apple @Zsailer
A. T. Darian Two Sigma @afshin

Jupyter Community Call

September 24th, 2019

Date: September 24, 2019, at 9am Pacific (your timezone)

Link: Youtube Video

Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.
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Short reports, celebrations, shout-outs

This is a place to make short announcements (without a need for discussion).

• Co-locating a Jupyter Server and Dask Scheduler _By Matthew Rocklin [name=tonyfast]

• Language server protocol

– current work on jupyterlab-lsp [name=krassowski]

– wip binder [name=bollwyvl]

Agenda Items

Add agenda items here before the meeting. We will reorganize the agenda so that it fits in the 60m meeting slot.

• importing notebooks with importnb [name=tonyfast]

importnb provides easy, flexible reuse of IPython notebooks from other notebooks, .py scripts and
libraries, and even the command line.

• RobotLab: a one-click Jupyter and Robot Framework environment [name=bollwyvl]

RobotLabwas built to support a workshop introducing acceptance-test-driven development and robot
process automation with robotkernel, a Robot Framework kernel, in JupyterLab. It is built with conda,
constructor and azure pipelines. You can use the installers to learn how you can use Robot Framework
and Jupyter, or adapt its pipeline to produce your own, cross-platform installers

• Project Drawdown [name=dgentry]

Project Drawdown is a global research organization that identifies, reviews, and analyzes the most
viable solutions to climate change, and shares these findings with the world. We’ll show current state
of climate solution models using Voila and JupyterHub, and ask for suggestions about git operation
driven from the Notebook.

Attendees

• Zach | Jupyter Cal Poly | @Zsailer |

• Denton | Project Drawdown | @DentonGentry |

• Nick | GTRI | @nrbgt |

• Chico Venancio | BMC Group K. K. | @chicocvenancio |

• Tony Fast | Quansight | @tonyfast |

• Wayne Decatur | Upstate Medical | @fomightez |

• Kevin Bates | IBM | @kevin-bates |

• Carol | Jupyter | @willingc |
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Jupyter Community Call

August 27th, 2019

Date: August 27, 2019, at 9am Pacific (your timezone)

Link: Youtube Video

Welcome!

Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.

Short reports, celebrations, shout-outs

This is a place to make short announcements (without a need for discussion).

• [x] Tracking Jupyter Newsletter, 22nd edition. Thank you, Tony Hirst!

• [x] JupyterLab 1.1.0rc0 is up on PyPI and conda-forge. Please test! JupyterLab 1.1.0 will be released tomorrow.

– pip install --pre jupyterlab==1.1.0rc0 or

– conda install -c conda-forge/label/prerelease-jupyterlab jupyterlab=1.1.0rc0

• [ ] [name=yournamehere]

Agenda Items

Add agenda items here before the meeting. We will reorganize the agenda so that it fits in the 60m meeting slot.

• [x] [name=Jupyter Cal Poly Intern Team] Rich Text JupyterLab extension

• [x] [name=Jupyter Cal Poly Intern Team] Python Package Installer JupyterLab extension

• [x] [name=Tony Fast] Gist to Binder

– https://gist.github.com/Zsailer/6da0dc3c97ec873685b7fe58e52d36d7

– People say reproducibility is hard.

– User mybinder.org to generate a live notebook from a Gist.

– dependencies in requirement.txt lead to a faster build.

• [x] [name=Saul Shanabrook] JupyterLab Rich Context Extensions

– [ ] Data registry with HDF5 Viewer

∗ [ ] It’s meant to make it easier to create new extensions in JupyterLab that deal with different data
formats. If you have a data viewer extension, you shouldn’t care if the data came from a file or from a
notebook output or a database, you just want to be able to render a certain format.

∗ [ ] Able to visualize HDF5 datasets using this extension too!

– [ ] Metadata/linked data service
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Attendees

If you are joining the Jupyter Community Call, sign in below so we know who was here.

• Zach | Jupyter Cal Poly | @Zsailer |

• Derek | Jupyter Cal Poly (Intern) | @dLamSlo8 |

• Isabela | Jupyter Cal Poly (Intern) | @isabela-pf |

• Marisa | Jupyter Cal Poly (Intern) | @marisaaquilina |

• Markelle | Jupyter Cal Poly (Intern) | @markellekelly |

• Javier | Jupyter Cal Poly (Intern) | @javag97 |

• Denton | Project Drawdown | @dgentry |

• Tony | Quansight | @tonyfast |

• Chico Venancio| BMC Group K. K.| @chicocvenancio|

• Elizabeth DuPre | McGill University | @emdupre|

• Wayne Decatur | Upstate Medical University | @fomightez|

• Saul Shanabrook | Quansight | @saulshanabrook |

• Joe | Mavenomics | @quigleyj-mavenomics|

• A. T. Darian | Two Sigma | @afshin |

• Erik Sundell | Sandvik | @consideRatio |

• Kevin Bates | IBM | @kevin-bates |

Jupyter Community Call

June 25th, 2019

Date: June 25th, 2019, at 9am PST (your timezome)

Link Youtube Video

Welcome!

Purpose

Think of it as a monthly, virtual JupyterCon. It’s a place to announce and share fun things happening in the Jupyter
community.

For more discussion on the format of these calls, see the thread here.
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Short reports, celebrations, shout-outs

This is a place to make short announcements (without a need for discussion).

• [ ] [name=willingc] Congrats again to our newest BinderHub/JupyterHub team member, Sarah :tada:

• [ ] [name=Zsailer] Welcome the new Jupyter Cal Poly Intern team.

• [ ] [name=tgeorgeux] Introduction to Rich Context Work: Metadata, Data Registry, Commenting and Annotation,
Real-Time Collaboration, Telemetry.

– Data Registry/Explorer

– Commenting

– Metadata

– Telemetry

• [ ] [name=Erik Sundell] repo2docker / MyBinder.org support for git repositories with Pipfile / Pipfile.lock coming
up soon I hope ;D repo2docker#649

• [ ] [name=yournamehere]

Agenda Items

Add agenda items here before the meeting. We will reorganize the agenda so that it fits in the 60m meeting slot.

• [ ] [name=kbates] Brief overview of Jupyter Enterprise Gateway

– Questions:

∗ Where can we find information to share with others?

· See this post

– Comments:

∗ Add talks to EG docs

∗ Check if Docker Stacks has a link to the EG docker stacks

∗ Add link to this demo to the EG docs

• [ ] [name=dgentry] existing system for git commit+push without requiring a forked repo? Similar to submitting
homework for grading?

– nbgrader and hubshare mentioned by Zach

– nbstripout / fastai-nbstripout can play a part of making git merges more reasonable

– Ask the Jupyter education community

∗ Jupyter Education Mailing List

– Check out solutions from Gigantum, a tech company started out of Johns Hopkins

• [ ] [name=YourNameHere]

• [ ] [name=YourNameHere]
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Attendees

If you are joining the Jupyter Community Call, sign in below so we know who was here.

• Zach | Jupyter Cal Poly | @Zsailer |

• Erik | Sandvik | @consideRatio |

• Denton | individual | @DentonGentry |

• Tim | Jupyter Cal Poly | @tgeorgeux |

• Kevin | IBM | @kevin-bates |

• Wayne | Upstate Medical University| @Fomightez |

• Dav | Gigantum | @davclark |

• Mike Trizna | Smithsonian | @MikeTrizna |

• Anton Akhmerov | TU Delft | @akhmerov |

• Markelle | Jupyter Cal Poly | |

• Carol | Jupyter | @willingc |

• Saul | Quansight | @saulshanabrook |

• Yair | Mavenomics | @YairMarcowMavenomics|

• Joe | Mavenomics | @quigleyj-mavenomics|

• Ruixin | Microsoft | @ruixinxu |

Jupyter Community Call

May 28th, 2019

Date: 28 May 2019 at 9am PST (your timezome)

Link: Youtube Video

Welcome to the All-Jupyter Community Meeting

Purpose

The purpose of these monthly video conference calls is to share and demonstrate the awesome things happening in
Jupyter community. We invite anyone to present their work, engage in discussion, or just sit in and listen. Whether you
have a new lab extension you’ve created, a new jupyterhub deployment you’re excited about, or an nteract papermill
pipeline powering your business, we’d love to hear about it! And, we’ll record and publish these calls on YouTube for
anyone unable to attend.

For more discussion on the format of these calls, see the thread here.
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Short reports, celebrations, shout-outs

This is a place to make short announcements (without a need for discussion). This is also a great place to give shout-outs
to contributors! We’ll read through these at the beginning of the meeting.

• Hello from The Turing Way Book Dash :books::dash::dash: in London. This call is right at the end of a day of 18
people working together to improve the openly developed Jupyter book. Our goal is to make “Reproducibility too
easy not to do” (:laughing::grimacing::scream_cat:), build a strong and supportive community, and give people
the knowledge and confidence they need to contribute to open source projects [name=Kirstie & Turing Way team]

– GitHub repo: https://github.com/alan-turing-institute/the-turing-way

– The book: https://the-turing-way.netlify.com

– Chat room: https://gitter.im/alan-turing-institute/the-turing-way

Agenda Items

Add your potential agenda item here 24 hours before the meeting at the latest. We will reorganize the agenda so that
it fits in the 60m meeting slot.

• Feedback and report from Research Software Reactor Sprint [name=Sarah]

– Event website: https://www.microsoftevents.com/profile/form/index.cfm?PKformID=0x6927743abcd

– Project list: https://github.com/research-software-reactor

– New binderhub in the world :baby: :confetti_ball: https://twitter.com/gerardjgorman/status/1131097133292183553

• Feedback and report from Jupyter Server Design and Roadmap workshop [name=Luciano]

– sponsored by bloomberg

– thomas, kevin, etc.

– functionality directions, high-level roadmap

– decouple frontend from backend: notebook, lab, nteract, voila

– using the backend functionality, providing different UIs

– how do we accomplish that? jupyter_server extension points

∗ ui

∗ backend

∗ handlers

– roadmap

∗ phase 1: integrating with existing uis (notebookclassic, lab)

∗ phase 2: expand functionality

· kernel provider pr (e.g. different kernel managers, like Enterprise Kernel Gateway)

∗ next steps:

· pr from zak

· blog post (illustration)

· biweekly calls

∗ timeline:
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· 6.0 release of notebook?

· post jupyterlab 1.0?

• Qt(5.6)-based PDF output from JupyterLab (0.35) Quick demo of using QtWebEngine to load a notebook in lab
and make a PDF. $_{n+1}$th time’s the charm! | issue | repo | [name=Nick]

Attendees

If you are joining the All-Jupyter Community video meeting, sign in below so we know who was here. Roll call:

• | Zach | Jupyter Cal Poly | @Zsailer |

• | Amit | ReviewNB | @amit1rrr |

• | Kirstie | Alan Turing Institute | @KirstieJane |

• | Pete | Thorn | @parente |

• | Tony | Quansight | @tonyfast |

• | Nick | GTRI | @bollwyvl |

• | Luciano | IBM | @lresende |

• | Sarah | The Alan Turing Institute | @sgibson91 |

• | Saul | Quansight | @saulshanabrook |

• | James | MUN | @jmunroe |

• | Darian | Two Sigma | @afshin |

• | Matthias| UC Merced | @carreau |

• | Tania | Microsoft | @trallard |

• | Carol | Project Jupyter | @willingc |

• | Chris | UNC-Chapel Hill | @cbcunc |

All-Jupyter Community Video Call - April 2019

Date: 30 April 2019 at 9am PST (your timezome)

Video-conference link: https://calpoly.zoom.us/my/jupyter

Welcome to the Team Meeting

Hello!

The purpose of these monthly video conference calls is to share and demonstrate the awesome things happening in
Jupyter community. We invite anyone to present their work, engage in discussion, or just sit in and listen. Whether you
have a new lab extension you’ve created, a new jupyterhub deployment you’re excited about, or an nteract papermill
pipeline powering your business, we’d love to hear about it! And, we’ll record and publish these calls on YouTube for
anyone unable to attend.

For more discussion on the format of these calls, see the thread here.
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Short reports, celebrations, shout-outs

This is a place to make short announcements (without a need for discussion). This is also a great place to give shout-outs
to contributors! We’ll read through these at the beginning of the meeting.

• [x] Shout-out to @GrahamDumpleton for continued well-researched improvements to security (e.g.,
https://github.com/jupyter/docker-stacks/pull/845) [name=Peter Parente]

• [x] Some initial work on enabling Jupyter documentation translation is happening in
https://github.com/jupyter/docker-stacks/issues/827. If you would like to contribute a translation, review
one in progress, or help document the process itself, please reach out in the issue. Thanks to @michiboo
(Micky), @Nico769 (Nicola), and @Allanfs (Allan) for starting translations! [name=Peter Parente]

• [x] Work is being done to use BinderHub fully in AWS (hosted docker registry, ECR, and hosted git repository,
CodeCommit are the current areas). [name=Chico Venancio]

• [x] JupyterLab 1.0.0a3 has been released since our last call. There are a ton of updates. One thing I specifically
want to give a shout out to is the document search feature that Andrew Schlaepfer built which allows building
custom search functionality for different document types. Install the new version to take it for a spin: pip
install --pre jupyterlab [name=Darian]

• [x] RISE 5.5.0 was released, more info about the release in this blogpost:
http://damianavila.github.io/blog/posts/rise-550-is-out.html [name=Damián]

• [x] A big shout-out to Paul Ivanov for helping organize a “Jupyter Open Studio Day” at Bloomberg in SF. Lots
of great people came, shared ideas, learned, and generally celebrated open source stuff! [name=Chris H (but I
won’t be able to attend the meeting)]

• [x] (a few quick shout-outs from Chris) Papermill 1.0 is released! Congrats to the nteract community for re-
leasing papermill 1.0, a tool for parametizing / pipelining notebooks. See the Discourse for some more links.
[name=Chris H (but I won’t be able to attend the meeting)]

• [x] Many thanks to @KirstieJane and @betatim for improving the contributing documentation in repo2docker
(link to one PR on this) [name=Chris H (but I won’t be able to attend the meeting)]

• [x] IPython 7.5 out ! (mostly bugfixes) [name=Matthias, at airport so will stay muted] (Shout out to Matthias for
this too!)

• [x] Matthias,Paul,Carol. . . are at PyCon for a tutorial (Thursday), and have Jupyter stickers ! [name=Matthias,
at airport so will stay muted]

• [ ] add item here [name=add your name]

Agenda Items

Add your potential agenda item here 24 hours before the meeting at the latest. We will reorganize the agenda so that
it fits in the 60m meeting slot.

• [x] Updates from the nteract project [name=Safia Abdalla]

– New release of the cross-platform nteract desktop app is out.

– papermill v1.0 is released.

• [x] Jupyter at the University of Edinburgh, a walkthrough of the Noteable service [name=James Slack]

– Overview of what’s happening at University of Edinburgh

∗ Large support teams.

∗ Very open mindset.
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– http://open.ed.ac.uk/

– How Jupyter came to the University

∗ Small scale adoption to start

∗ Students were installing Jupyter on university computers.

∗ Make Jupyter a shared central service.

∗ JupyterHub service university wide for use in education.

– Pilot phase of Noteable.

– 6 courses with 6 different schools (~600 students).

∗ Political science, art, computer science. . .

– Integrated with nbgrader.

– Jupyter Community Hackathon on NBGrader in Edinburgh.

– Questions and comments:

∗ Connections or interactions with Canadian group? https://syzygy.ca [name=Lindsey Heagy]

∗ Is this running in the cloud or university server? [name=Anton Akhmerov]

· University server

∗ Have you explored Binderhub? [name=Chico Vernancio]

· BinderHub now can run with “auth” and persistent storage, see
https://github.com/jupyterhub/binderhub/issues/794 for more details and a live demo (ask
@betatim if you have more questions)

• [ ] Introducing the rewrite of jupyter-sphinx (example here) and a discussion about markup format in the note-
books (https://github.com/jupyter/nbformat/issues/80) [name=Anton Akhmerov]

– Publishing documents with complex content and computed output.

• Questions/Comments: - [name=matthias (can’t speak)]: I’d love to merge that with ipython built-in sphinx-ext,
/(deprecate sphinx-ext potentially as it’s not well maintained (sphix-ext docs)

• [ ] Quantum Chemistry Database exploration with Jupyter through the QCArchive project, [name=Daniel Smith].

– The Molecular Sciences Software Institute

∗ NSF funded.

∗ Designed to serve and enhance software development efforts of broad field of computational molecular
science.

∗ 8 universities represented on Board of Directors

∗ Github org: https://github.com/MolSSI

∗ https://molssi.org

– QCFractal

– Join our Slack to get involved.

– Questions/comments:

∗ Is this user created content or hostesd content?

· Completely user created.

∗
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• [ ] May 13 & 14 W4A Hackathon on Accessibility of JupyterLab

• [ ] Add your item here [name=and your name]

University of Edinburgh materials and contact:

• Contact james.slack@ed.ac.uk

• Noteable - https://noteable.edina.ac.uk/

• Blog https://thinking.is.ed.ac.uk/noteable/

• nbgrader Hackathon - http://edin.ac/2SGmzNu

• Presentation - https://edin.ac/2PBJc1T

In Attendance

Name / Institution / Github Handle

• Zach / Jupyter Cal Poly / @Zsailer

• Pete / Thorn / @parente

• James Slack / University of Edinburgh / @jamesaslack

• Anton Akhmerov / TU Delft / @akhmerov

• Peter Rose / UC San Diego / @pwrose

• A. T. Darian / Two Sigma / @afshin

• Ward Harold / Google / @wkharold

• Damián Avila / / @damianavila

• Chico Venancio / BMC Group K.K. / @chicocvenancio

• Eric Lesch / BMC Group K.K. / @EricLesch

• James Munroe / Memorial University of Newfoundland / @jmunroe

• Lindsey Heagy / UC Berkeley / @lheagy

• Daniel Smith / The Molecular Sciences Software Institute / @dgasmith

• Michael Milligan / U. Minnesota/MSI / @mbmilligan

• Kevin Bates / IBM / @kevin-bates

• Cindy Wu / experiment.com / @cindywu

• Joe Hamman / NCAR / @jhamman

• Nick Bollweg / GTRI / @bollwyvl

• Tom Baldwin / Cascade Data Labs / @baldwint

• Pete Blois / Google Colab / @blois

• Ana Ruvalcaba / Cal Poly, San Luis Obispo/Jupyter / @ruv7

• Tim Head / Project Binder / Zurich / @betatim

• Matthias Bussonnier / Jupyter Project / @carreau
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• Tim George / Cal Poly, San Luis Obispo/Jupyter / @tgeorgeux

All-Jupyter Community Video Call - March 2019

Date: 26 March 2019 at 9am PST (your timezome)

Video-conference link: https://calpoly.zoom.us/my/jupyter

Link to prior meeting’s virtual meeting report

Welcome to the Team Meeting

Hello!

The purpose of these monthly video conference calls is to share and demonstrate the awesome things happening in
Jupyter community. We invite anyone to present their work, engage in discussion, or just sit in and listen. Whether you
have a new lab extension you’ve created, a new jupyterhub deployment you’re excited about, or an nteract papermill
pipeline powering your business, we’d love to hear about it! And, we’ll record and publish these calls on YouTube for
anyone unable to attend.

For more discussion on the format of these calls, see the thread here.

Short reports, celebrations, shout-outs

This is a place to make short announcements (without a need for discussion). This is also a great place to give shout-outs
to contributors! We’ll read through these at the beginning of the meeting.

• [x] Shout out to Damian Avila for the second community docker stack: umsimads/education-notebook [Peter
Parente, jupyter/docker-stacks]

• [x] Thank you Tony Hirst for your weekly newsletter Tracking Jupyter [Carol Willing, JupyterHub]

• [x] Thank you to Professor Lorena Barba at GWU for hosting the recent Jupyter team meeting [Carol Willing,
JupyterHub]

• [x] Kudos, Zach Sailer et al, for kicking off the revitalization of this meeting over on the Jupyter Discourse site
[Peter Parente (and everyone in attendance I suspect)]

• [x] Leave your feedback about our new all-Jupyter community call here

• [x] Come join us on the Jupyter Discourse Forum! (in case you aren’t already tired of me telling you this :-) )

– https://discourse.jupyter.org/t/introduce-yourself/17

– Turn off add blocker if you want to login with google or github.

Agenda Items

• Let’s collect all potential agenda items here before the start of the meeting (closing time 24h before). We will
then attempt to create a coherent agenda that fits in the 60m meeting slot. If there are similar items try and group
them already.

• [x] Suggested demo: docker-stacks project now posts image build manifests back to the GitHub project wiki for
inspection [Peter Parente, https://github.com/jupyter/docker-stacks/wiki, 5 minutes]

• [x] Introduction to mybinder.org, how to make a repository ready for running on mybinder.org [Tim Head, 10min-
utes]
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– https://mybinder.org/

– https://github.com/betatim/my-first-binder

– Lots of example repositories: https://github.com/binder-examples/

– Not just notebooks: https://github.com/betatim/vscode-binder

– Documentation on how to specify dependencies and such https://repo2docker.readthedocs.io/en/latest/

– Questions, comments and support: https://discourse.jupyter.org/c/questions

– Write questions you have here:

∗ . . .

∗ Is it true that you personally are the only user of https://github.com/Carreau/open-with-binder ?

∗ If running an event/tutorial type thing with Binder, how many users should we feel comfortable sending
to MyBinder vs setting up our own Z2JH infrastructure?

· By default it prevents more than 100 concurrent launches of the same repo. You can ask for more
if you are nice.

· fun fact: apparently the reason this launch was slow is because somebody is teaching
a “learn java” course on Binder just now and a bunch of people connected all at once
https://github.com/santanche/java2learn

∗ Show the log dashboard :P

· sure thing: https://grafana.mybinder.org/d/fZWsQmnmz/pod-
activity?refresh=1m&panelId=1&fullscreen&orgId=1

∗ We’d love to figure out a funding model for binder

• [x] [10minutes ] Update from the nteract team [Safia].

– Version 1.0 of papermill, notebook execution and parameterization library, will be released in early April.
(https://github.com/nteract/papermill)

– Scrapbook, tool for extracting and assembling generated outputs and data from notebooks, known as scraps,
will allow you to host scraps remotely on various cloud providers. (https://github.com/nteract/scrapbook)

– Plan laid out for version 1.0 of the kernel-relay, a GraphQL API for interfacing with Jupyter kernels.
(https://github.com/nteract/kernel-relay)

– Effort to modularize the Data Explorer, an automatic visualization library, is underway.

– nteract is participating in Google Summer of Code (https://summerofcode.withgoogle.com/organizations/5447807656263680/)

– Questions:

∗ How to learn more:

· Nteract slack https://slack.nteract.io/

· Weekly meeting on Monday Afternoon

∗ Where is the Data Explorer repo?

• [x] deathbeds stuff [Nick, github.com/deathbeds, 5min].

– lintotype: interactive linting & formatting

– wxyz: some crazy widgets

– Questions:

∗ The SVG messed with my eyes. <3
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∗ Can you expand upon the “cell-id” things?

· cell id in lintotype

· cell id in irobotframework

∗ Are those supposed to be extension ? Built-in ?. . . ?

· ready to be packaged (not yet). Some of the stuff could go into ipywidgets

• [x] IPython releases [Matthias, IPython, https://github.com/ipython/ipython, 2min.]

– Trying to do monthly release close to End Of Month.

– 7.4 has been released ! Thanks to everyone.

– If you want to help with 7.5 subscribe to the following issue.

∗ https://github.com/ipython/ipython/issues/11657

• [x] Async Kernels startup : [Matthias, Jupyter Client , https://github.com/jupyter/jupyter_client/pull/428, 4min.]

– https://github.com/jupyter/jupyter_client/pull/428

• add item here [name, project name/url, estimated time for discussion].

Don’t get limited to technical discussions !

In Attendance

Name | Institution | Github Handle

• Zach | Jupyter Cal Poly | @Zsailer

• Kyle | Netflix | @rgbkrk

• Pete | Valassis Digital | @parente

• Carol | Project Jupyter | @willingc (will miss due to OpenEdX conference)

• Brian | AWS | @ellisonbg

• Darian | Two Sigma | @afshin

• Ward | Google | @wkharold

• Tim | Project Jupyter | @betatim

• Chris | Berkeley/Project Jupyter| @choldgraf

• Pete | Google Colab | @blois

• Matthias | UC Merced | @carreau

• Saul | Quansight | @saulshanabrook

• Vidar | Simula Research | @vidartf

• Lindsey Heagy | UC Berkeley | @lheagy

• Safia ABdalla | Microsoft/nteract | @captainsafia

• Leticia Portella | - | @leportella

• Damián Avila | Project Jupyter | @damianavila

• Craig Citro | Google Colab | @craigcitro

• Nick Bollweg | GTRI | @bollwyvl
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• Michael Milligan | U Minnesota / MSI | @mbmilligan

• Liang Bin Hsueh | InfuseAI | @hlb

• Thomas Vander Velde | - | @tomasdelcampo

• Luciano Resende | IBM | @lresende

• Tony Fast | Quansight | @tonyfast

• James Slack | University of Edinburgh | @jamesaslack

• Erik Sundell | Sandvik | @consideratio

3.4.2 Jupyter Community Meetings

The Jupyter community often meets (usually on-line) in order to discuss matters in the Jupyter community, share new
ideas and discussions, and connect with one another. This often happens within specific sub-project (more information
below), though there are also occasional community-wide meetings.

This following calendar shows the various meetings and events from Jupyter sub-projects:

Jupyter-wide meetings

All-Jupyter Community Calls generally happen on the last Tuesday of the month, and are focused around demonstra-
tions and sharing information across all of the Jupyter projects.

• Find information on this Discourse thread.

• Watch previous calls on our YouTube channel.

• Read the notes from previous calls.

In addition, you can find the notes from previous community meetings below.

Jupyter Project meetings

The core developers of various Jupyter sub-projects have regular meetings to discuss and demo what they have been
working on, discuss future plans, and bootstrap conversation. These meetings are public and you are welcome to join
remotely.

Each team has their own processes around logistics and planning for the team meetings. The following pages should
help you find the information for each.

JupyterHub meetings happen monthly. For a calendar of future team meetings, see the JupyterHub team compass
repository.

JupyterLab meetings happen weekly. For more information about when these meetings happen, as well as notes from
each meeting, see the JupyterLab README.

General meeting conversation and planning often happens in the dev-meeting-attendance Gitter channel. We rec-
ommend checking it periodically for new information about when meetings are happening.
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3.4.3 Jupyter communications

As a general rule, most project-wide conversation happens in the Jupyter community forum. There are also many other
kinds of communication that happens within the community. See below for links and other relevant information.

• Community forum https://discourse.jupyter.org/

• Blog https://blog.jupyter.org/

• Newsletter https://newsletter.jupyter.org/

• Website https://jupyter.org

• Twitter https://twitter.com/ProjectJupyter

• Gitter https://gitter.im/jupyter/jupyter

• Mailing lists (Jupyter, Jupyter in Education) https://jupyter.org/community.html

3.4.4 Governance

• Steering council: Information about the steering council and its members can be found on the Jupyter website.

• Information about Jupyter’s governance process can be found on the Jupyter governance website.

• Jupyter Enhancement Proposal (JEP) process: Details about the process can be found in the enhancement pro-
posals website.

3.4.5 Code of conduct

Information can be found in the Jupyter Code of Conduct page.

3.4.6 Running Jupyter Events

Members of the Jupyter community often get together to share what they’re working on, to work together, and to teach
and learn from one another.

If you’re organizing an event with the Jupyter community (whether it’s as small as a JupyterDays meetup, or as large as
JupyterCon) you should ensure that the event follows the values and goals of the Jupyter project - to be a place where
everyone feels welcome and supported and that reflects the diversity of developers and users in the Jupyter community.

Shoot for having 25% of your participants come from under-represented groups. If you’re organizing a Jupyter
event, here are some resources to help out.

• Mozilla has a number of excellent resources on hosting open events. The Mozilla Open Events guide. This is
an excellent resource for planning and running an open, inclusive event. In particular, this section on making
events more inviting is a good way to make your event more welcoming, interesting, and accessible to the Jupyter
community. Finally, the Diversity and Inclusion wiki includes conference calls related to this topic.

• The NumFocus DISCOVER cookbook is another collection of resources for making your event more productive,
diverse, and inclusive.

• The National Center for Women & Information Technology has an excellent collection of resources for creating a
diverse and inclusive environment. In particular, we recommend their Inclusive Environment Assessment Guide
and 10 actionable ways to actually increase diversity.

• The PyCascades community has several efforts in improving diversity and inclusion.

• Write the Docs has a Welcome Wagon Guide to help first-time attendees feel welcome and included.
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Ultimately, making events more inclusive is not rocket science and there is no magic bullet. It requires clear, focused
dedication, planning ahead, and sustained resources and effort over time. However, we believe this effort is worth it!

3.4.7 What is a Jovyan?

You may see the word Jovyan used in Jupyter tools (such as the user ID in the Jupyter Docker stacks or referenced in
conversations. But what is a Jovyan?

In astronomical terms, the word “Jovian” means “like Jupiter”. It describes several planets that share Jupiter-like
properties.

Much like the planet Jupiter and our solar system, the Jupyter community is large, distributed, and nebulous. We like
to use the word Jovyan to describe members of this community. Jovyans are fellow open enthusiasts that use, develop,
promote, teach, learn, and otherwise enjoy tools in Jupyter’s orbit. They make up the Jupyter community. If you’re not
sure whether you’re a Jovyan, you probably are :-)

3.5 Contributing

3.5.1 Getting Started Contributing

Contents

• Major Repos and Issue Types

– Python

– Documentation

– JavaScript/TypeScript

– DevOps

– Web Development

Welcome fellow contributor! We appreciate your help.

We typically label issues appropriate for new contributors as good first issue or help wanted. To start an issue,
you may comment to let everyone know that you’ll be working on it. Our repos typically provide development installa-
tion instructions in each repo’s CONTRIBUTING.md or README.md. Should you find an issue with our development
installation instructions please let us know in our issues. We want to ensure that our documentation for development
installation is accurate. Additionally, other contributors are often available to answer questions about fixing the issue
on the issue number or on the repo’s gitter channel.

We strive to have a inclusive, welcoming community. Please read our code of conduct to learn more.
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Major Repos and Issue Types

Python

IPython, nbgrader, JupyterHub, repo2docker, and Binder are major repos written primarily in Python.

• IPython

– Notable Issues

– Development Installation

– Gitter Channel

• nbgrader

– Notable Issues

– Development Installation

• JupyterHub

– Notable Issues

– Development Installation

– Gitter Channel

• repo2docker

– Notable Issues

– Development Installation

– Gitter Channel

• Binder

– Notable Issues

– Development Installation

– Gitter Channel

Documentation

All our repos have documentation issues that are relevant for new contributors. For example, the source for the docu-
mentation you are reading right now can be found in the jupyter/jupyter repository on GitHub.

JavaScript/TypeScript

Jupyter Notebook, JupyterLab, and IPyWidgets use JavaScript and TypeScript.

• Jupyter Notebook

– Notable Issues

– Development Installation

– Gitter Channel

• JupyterLab

– Notable Issues

102 Chapter 3. Table of Contents

https://github.com/ipython/ipython
https://github.com/ipython/ipython/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22
https://github.com/ipython/ipython#development-and-instant-running
https://gitter.im/ipython/ipython
https://github.com/jupyter/nbgrader
https://github.com/jupyter/nbgrader/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22
https://nbgrader.readthedocs.io/en/latest/contributor_guide/installation_developer.html
https://github.com/jupyterhub/jupyterhub
https://github.com/jupyterhub/jupyterhub/issues?q=is%3Aissue+is%3Aopen+label%3A%22help+wanted%22
https://github.com/jupyterhub/jupyterhub#contributing
https://gitter.im/jupyterhub/jupyterhub
https://github.com/jupyter/repo2docker
https://github.com/jupyter/repo2docker/issues?q=is%3Aissue+is%3Aopen+label%3A%22help+wanted%22
https://github.com/jupyter/repo2docker#installation
https://gitter.im/jupyterhub/jupyterhub
https://github.com/jupyterhub/binderhub
https://github.com/jupyterhub/binderhub/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22
https://github.com/jupyterhub/binderhub/blob/master/CONTRIBUTING.md
https://gitter.im/jupyterhub/binder
https://github.com/jupyter/jupyter
https://github.com/jupyter/notebook
https://github.com/jupyter/notebook/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22
https://github.com/jupyter/notebook/blob/master/CONTRIBUTING.rst
https://gitter.im/jupyter/notebook
https://github.com/jupyterlab/jupyterlab
https://github.com/jupyterlab/jupyterlab/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22


Jupyter Documentation, Release 4.1.1 alpha

– Development Installation

– Gitter Channel

• IPyWidgets

– Notable Issues

– Development Installation

– Gitter Channel

DevOps

JupyterHub, repo2docker, and Binder have many issues related to devops. See the links above.

Web Development

We have issues related to the website.

• Project Jupyter’s Website

– Notable Issues

– Developer Installation

3.5.2 Developer Guide

Contents

How can I help?

Contents

• Submitting Pull Requests

• Contribution Workflow

• Core Developer Workflow

• Submitting a Bug

• Reporting a Vulnerability

Contributing to open source can be a nerve-wrecking process, but don’t worry everyone on the Jupyter team is dedicated
to making sure that your open source experience is as fun as possible. At any time during the process described below,
you can reach out to the Jupyter team on Gitter or the mailing list for assistance. If you are nervous about asking
questions in public, you can also reach out to one of the Jupyter developers in private. You can use the public Gitter to
find someone who has the best knowledge about the code you are working with and interact with the in a personal chat.

As you begin your open source journey, remember that it’s OK if you don’t understand something, it’s OK to make
mistakes, and it’s OK to only contribute a small amount of the code necessary to fix the issue you are tackling. Any
and all help is welcome and any and all people are encouraged to contribute.
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Submitting Pull Requests

Individuals are welcome, and encouraged, to submit pull requests and contribute to the Jupyter source. If you are a
first-time contributor looking to get involved with Jupyter, you can use the following query in a GitHub search to find
beginner-friendly issues to tackle across the Jupyter codebase. This query is particularly useful because the Jupyter
codebase is scattered across several repositories within the jupyter organization, as opposed to a single repository. You
can click the link below to find sprint-friendly issues.

is:issue is:open is:sprint-friendly user:jupyter

Once you’ve found an issue that you are eager to solve, you can use the guide below to get started. If you experience
any problems while working on the issue, leave a comment on the issue page in GitHub and someone on the core team
will be able to lend you assistance.

Please keep in mind that what follows are guidelines. If you work through the steps and have questions or run into
time constraints, please submit what you already have worked on as a pull request and ask questions on it. Your effort,
including partial or in-progress work, is appreciated.

1. Fork the repository associated with the issue you are addressing and clone it to a local directory on your machine.

2. cd into the directory and create a new branch using git checkout -b insert-branch-name-here.

Pick a branch name that gives some insight into what the issue you are fixing is. For example, if you are up-
dating the text that is logged out by the program when a certain error happens you might name your branch
update-error-text.

3. Refer to the repository’s README and documentation for details on configuring your system for development.

4. Identify the module or class where the code change you will make will reside and leave a comment in the file
describing what issue you are trying to address.

5. Open a pull request to the repository with [WIP] appended to the front so that the core team is aware that you are
actively pursuing the issue. When creating a pull request, make sure that the title clearly and concisely described
what your code does. For example, we might use the title “Updated error message on ExampleException”. In
the body of the pull request, make sure that you include the phrase “Closes #issue-number-here”, where the issue
number is the issue number of the issue that you are addressing in this PR.

Feel free to open a PR as early as possible. Getting early feedback on your approach will save you time and
prevent the need for an extensive refactor later.

6. Run the test suite locally in order to ensure that everything is properly configured on your system. Refer to the
repository’s README for information on how to run the test suite. This will typically require that you run
the nosetests command on the commandline. Alternatively, you may submit a pull request. Our Continuous
Integration system will test your code and report test results.

7. Find the test file associated with the module that you will be changing. In the test file, add some tests that outline
what you expect the behavior of the change should be. If we continue with our example of updating the text that
is logged on error, we might write test cases that check to see if the exception raised when you induce the error
contains the appropriate string. When writing test cases, make sure that you test for the following things.

• What is the simplest test case I can write for this issue?

• What will happen if your code is given messy inputs?

• What will happen if your code is given no inputs?

• What will happen if your code is given too few inputs?

• What will happen if your code is given too many inputs?

If you need assistance writing test cases, you can place a comment on the pull request that was opened earlier
and one of the core team members will be able to help you.
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8. Go back to the file that you are updating and begin adding the code for your pull request.

9. Run the test suite again to see if your changes have caused any of the test cases to pass. If any of the test cases
have failed, go back to your code and make the updates necessary to have them pass.

10. Once all of your test cases have passed, commit both the test cases and the updated module and push the updates
to the branch on your forked repository.

11. Once you are ready for your pull request to be reviewed, remove the [WIP] tag from the front of issue, a project
reviewer will review your code for quality. You can expect the reviewer to check for the documentation provided
in the changes you made, how thorough the test cases you provided are, and how efficient your code is. Your
reviewer will provide feedback on your code and you will have the chance to edit your code and apply fixes.

12. Once your PR is ready to become a part of the code base, it will be merged by a member of the core team.

Contribution Workflow

Full Contribution Workflow description.1

1 A flow chart with 14 labeled boxes linked by arrows.
The chart is uni-directional. At each step, arrows point forward to one or more boxes and back to the previous box or boxes. Here the flow chart

is described as lists in which the possible next steps are listed beneath each box label.
1. Start 1a. forward to ‘Find an issue to address’

2. Find an issue to address 2a. forward to ‘Identify the relevant section of the codebase’

3. Identify the relevant section of the codebase 3a. forward to ‘Write simple test cases to verify that your fix or enhancement works.’

4. Write simple test cases to verify that your fix or enhancement works. 4a. forward to ‘Implement the bug fix or enhancement in the appropriate
location’

5. Implement the bug fix or enhancement in the appropriate location. 5a. Forward to ‘Run the test suite and verify that the updated code works
appropriately.’

6. Run the test suite and verify that the updated code works appropriately. 6a. forward to ‘Test suit passes!’ 6b. forward to ‘Test suit fails!’

7. Test suit fails 7a. forward to ‘Identify and fix any issues in the new code that might be causing errors. Refer to the mailing list or Gitter
channel for help.’

8. Identify and fix any issues in the new code that might be causing errors. Refer to the mailing list or Gitter channel for help. 8a. back to ‘Run
the test suite and verify that the updated code works appropriately’

9. Test suit passes! 9a. forward to ‘Submit a pull request to the appropriate repository with your awesome code!’

10. Submit a pull request to the appropriate repository with your awesome code! 10a. forward to ‘Reviewer approves and merges the PR’ 10b.
forward to ‘Reviewer responds with changes you should make to the PR’
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Core Developer Workflow

To help you understand our review process by core developers after you submit a pull request, here’s a guide that outlines
the general process (specifics may vary a bit across our repositories). Here is an example for Jupyter notebook 4.x:

In general, Pull Requests are against master unless they only affect a backport branch. If a PR affects master and
should be backported, the general flow is:

1. mark the PR with milestone for the next backport release (4.3)

2. merge into master

3. backport to 4.x

4. push updated 4.x branch

Backports can be done in a variety of ways, but we have a script for automating the common process to:

1. download the patch e.g. <https://patch-diff.githubusercontent.com/raw/jupyter/notebook/
pull/1645.patch>

2. checkout the 4.x branch

3. apply the patch

4. make a commit

which works for simple cases, at least.

In this case, it would be:

python /path/to/ipython-repo/tools/backport_pr.py jupyter/notebook 4.x 1645

11. Reviewer responds with changes you should make to the PR 11a. forward to ‘Apply the necessary fixes or updates to the pull request’

12. Apply the necessary fixes or updates to the pull request’ 12a. back to ‘Submit a pull request to the appropriate repository with your awesome
code!’

13. Reviewer approves and merges the PR’ 13a. forward to ‘Rejoice and repeat!’

14. ‘Rejoice and repeat!’
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Submitting a Bug

While using the Notebook, you might experience a bug that manifests itself in unexpected behavior. If so, we encourage
you to open issues on GitHub. To make the navigating issues easier for both developers and users, we ask that you take
the following steps before submitting an issue.

1. Search through StackOverflow and existing GitHub issues to ensure that the issue has not already been reported
by another user. If so, provide your input on the existing issue if you think it would be valuable.

2. Prepare a small, self-contained snippet of code that will allow others to reproduce the issue that you are experi-
encing.

3. Prepare information about the environment that you are executing the code in, in order to aid in the debugging
of the issue. You will need to provide information about the Python version, Jupyter version, operating system,
and browser that you are using when submitting bugs. You can also use pip list or conda list and grep in
order to identify the versions of the libraries that are relevant to the issue that you are submitting.

4. Prepare a simple test that outlines the expected behavior of the code or a description of the what the expected
behavior should be.

5. Prepare an explanation of why the current behavior is not desired and what it should be.

Reporting a Vulnerability

If you believe you’ve found a security vulnerability in a Jupyter project, please report it to security@ipython.org.
If you prefer to encrypt your security reports, you can use this PGP public key.

Jupyter Enhancement Proposals

Submitting an Enhancement Proposal

While using the Notebook, you might discover opportunities for growth and ideas for useful new features. If so, feel
free to submit an enhancement proposal. The process for submitting enhancements is as follows:

1. Identify the scope of the enhancement. Is it a change that affects only on part of the codebase? Is the enhancement,
to the best of your knowledge, fairly trivial to implement? If the scope of the enhancement is small, it should
be be submitted as an issue in the project’s repository. If the scope of your enhancement is large, it should be
submitted to the official Jupyter Enhancement Proposals repository.

2. Prepare a brief write-up of the problem that your enhancement will address.

3. Prepare a brief write-up of the proposed enhancement itself.

4. If the scope of your enhancement (as defined in step 1) is large, then prepare a detailed write-up of how your
enhancement can be potentially implemented.

5. Identify a brief list of the pros and cons associated with implementing the enhancement that you propose.

6. Identify the individuals who might be interested in implementing the enhancement.

7. Depending on the scope of your enhancement, submit it either as an issue to the appropriate repository or as a
Jupyter Enhancement Proposal.
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Basic template for releasing a Jupyter project

Jupyter consists of a bunch of small projects, and a few larger ones. This lays out the basic process of releasing a
smaller project, which should also apply to larger projects, though they may have some added steps.

Milestones

Most Jupyter projects use a GitHub milestone system for marking issues and pull requests in releases. Each release
should have a milestone associated with it. The first step in preparing for a release is to make sure that every issue and
pull request has the right milestone.

1. Go through any open Issues and Pull Requests marked with the current milestone. If there are any, they need to
be resolved or bumped to the next milestone. It’s fine to bump issues - they are typically marked with the earliest
feasible milestone, but many such optimistically marked tasks aren’t complete when it’s time to release. There’s
always next time!

2. Check closed Issues and Pull Requests, using the milestone filter “Issues with no milestone”. There should never
be any closed issues or pull requests without a milestone. If you find any, go through and mark them with the
current milestone or “no action” as appropriate.

A release may be ready to go when it has zero open issues or pull requests.

Release notes

Once all of the issues and pull requests are dealt with, it’s time to make release notes. The smaller projects generally
have a changelog.rst in the docs directory, where you can add a section for the new release. Look through the pull
requests merged for the current milestone (this is why we use milestones), and write a short summary of the highlights
of the changes in this release. There should generally be a link to the milestone itself for more details.

Make a pull requests with these notes. It’s a good idea to cc @willingc for review of this PR. Make sure to mark this
PR with your release’s milestone!

Making the release

Now that your changelog is merged, we can actually build and publish the release. We’ll assume that V has been
declared as a shell variable containing the release version:

export V=5.1.2

Start by making sure you have a clean checkout of master, with no extra files:

git pull
git clean -xfd

First, update the version of the package, often in the file <pkg>/_version.py or similar.

Commit that change:

git commit -am "release $V"

Note: At this point, I like to run the tests just to be sure that setting the version didn’t confuse anything.

Build the distributions:
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python setup.py sdist --formats=gztar
python setup.py bdist_wheel

Tag the commit:

git tag -am "release $V" $V

And finally, publish everything, to github and PyPI using twine:

twine upload dist/*
git push origin
git push origin --tags

We have a release! You can now bump the version to the next ‘.dev’ version, by editing <pkg>/_version.py (or
similar) again, and commit:

git commit -am "back to dev"
git push origin

Note: The pushes assume that origin points to the main jupyter/ipython repo. Depending how you use git, this could
be upstream or something else.

Whether you are a new contributor or a seasoned developer, we’re pleased that you are working on Jupyter. We hope
you find the Developer Guide is useful. Please suggest changes or ask questions about the contents. Thanks!

If you are interested in installing a specific project from source, each project has documentation on ReadTheDocs. For
example, IPython documentation can be found on ReadTheDocs. Most of our packages can be installed from the source
directory like any other Python package, by running:

pip install .

The Jupyter notebook needs some extra pieces to build Javascript components; the information about that is in the
notebook contributor documentation.

3.5.3 Documentation Guide

Contents

Getting started

Contents

• Preparing for your first contribution

• Developing your contribution

– Clone the repository

– Edit the documentation source file

• Testing changes
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• Creating a pull request

• Asking questions

Preparing for your first contribution

1. Our documentation uses reStructured Text, Markdown, and Jupyter notebooks.

2. We use Sphinx extensively to build documentation.

3. We use Transifex to help translate documentation to multiple languages.

4. We host our documentation on Read the Docs.

Developing your contribution

Jupyter’s documentation is split across several projects, listed on the Jupyter documentation home page. These instruc-
tions apply to all Jupyter projects, though some projects have further contribution guidelines.

Clone the repository

1. Fork the appropriate project repository on GitHub, depending on which project’s documentation you want to
contribute to.

2. Clone the repository to your system.

Edit the documentation source file

Source files for projects are typically found in the project’s docs/source directory. The reStructured text filenames
end with .rst, and Jupyter notebook files end with .ipynb.

1. In your favorite text editor, make desired changes to the .rst file when working with a reStructured text source
file.

2. If a notebook file requires editing, you will need to install Jupyter notebook according to the Installation doc-
ument. Then, run the Jupyter notebook and edit the desired file. Before saving the Jupyter .ipynb file, please
clear the output cells. Save the file and test your change.

Testing changes

Sphinx should be installed to test your documentation changes. For best results, we recommend that you install the
stable development version Sphinx (pip install git+https://github.com/sphinx-doc/sphinx@stable) or
the current released version of Sphinx (pip install sphinx).

In addition, you may need the following packages: sphinxcontrib-spelling, sphinx_rtd_theme, nb-
sphinx, pyenchant, recommonmark 0.4.0 and jupyter_sphinx_theme, which can be installed via pip
install sphinxcontrib-spelling sphinx_rtd_theme nbsphinx pyenchant recommonmark==0.4.0
jupyter_sphinx_theme.

If you are on Linux, you may also need to install the Enchant C library by running sudo apt-get install enchant.

Once everything is installed, the following commands should be executed using the Terminal/command line from the
docs directory:
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• make html builds a local html version of the documentation. The output message will either display errors or
provide the location of the html documents. For example, the location provided may be build/html and to view
these documents in your browser enter open build/html/index.html.

• make linkcheck will check whether the external links in the documentation are valid or if they are not longer
current (i.e. cause a 500 not found error).

Note: We recommend using Python 3.4+ for building the documentation. If you are editing the documentation, you
can use Python 2.7.9+ or the Github editor.

Creating a pull request

Once you are satisfied with your changes, submit a GitHub pull request, per the instructions above. If the documentation
change is related to an open GitHub issue, please mention the issue number in the pull request message.

A project reviewer will look over your changes and provide feedback or merge your changes into the documentation.

Asking questions

Feel free to ask questions in the Google Group for Jupyter or on an open issue on GitHub.

Understanding our workflow

High level documentation workflow

1. Identify a documentation change.

• Typos: please go ahead and fix it (or report as a bug).

• Open issues: leave a note in the issue comments that you are working on the issue.

• New documentation: open an issue with your idea or suggestion. We’ll review the issue and work with you
to identify next steps.

2. Update the source file.

3. Commit the change.

4. Test changes locally.

5. Open a pull request.

6. Check response of automated tests.

• If tests pass: Nice job. Wait for reviewer feedback and/ or your pull request to be merged.

• If tests show an error: Revise and resubmit your pull request. You do not need to open a new pull request.
If needed, please ask for assistance.

7. Celebrate your documentation contribution.

8. Repeat. If you would like suggestions for a new documentation issue to work on, please ask.

Thanks for contributing!
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Tools for documentation

Contents

• Packages

• Source file formats

• Sphinx themes

• Git and Github Resources

Packages

For user documentation, contributor guides, and communications content, we use:

• Sphinx

For developer API documentation (especially for JupyterLab js repos), we use:

• swagger

Source file formats

We use the following input source file formats when developing Sphinx documentation:

• reStructuredText (.rst)

• Markdown (.md)

• Notebook (.ipynb)

A modern code editor should be used. Many are available including Atom, SublimeText, gedit, vim, emacs. Atom is a
good choice for new contributors.

Sphinx themes

Our projects use the following themes:

• sphinx_rtd_theme (currently used by Jupyter projects)

• jupyter_sphinx_theme (used by ipywidgets)

Git and Github Resources

If this is your first time working with Github or git, you can leverage the following resources to learn about the tools.

• Try Git

• Github Guides

• Git Real

• Git Documentation

• Git Rebase
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Setting up a project’s documentation infrastructure

Contents:

Structuring a repo for docs

Root level of the repo

• docs directory : All source files for documentation go here.

• readthedocs.yml : configuration file for readthedocs to build using conda

Inside the docs directory

• source directory : contains all content source files in .rst, .md, or .ipynb

• makefile : used by Sphinx to build the docs

• environment.yml : conda build instructions
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Sphinx

• conf.py : Sphinx configuration file

• index.rst of contents.rst : Sphinx master table of contents file

• _static directory : contains images, drawings, icons

• _templates directory: overrides theme templates and layouts

• build directory : html files generated by Sphinx (do not check this directory into GitHub)
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Setting up a README

Providing users and developers consistency across repos is a valuable time saver and improves user productivity.

On a larger scope, having the Jupyter name appear prominently in a repo’s README.md file improves the project’s name
awareness.

Recommended elements in Jupyter project repos

Link in repo description

Please include a link to the documentation in the repo’s description.

Badges in README

One common way that individuals find documentation is to look for and click on the doc badge that commonly is found
right after the title. Another benefit is an easy visual indication if the docs are not rendering properly.
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Resources section in README

A Resources section at the end of the README.md gives useful links and information to users about the individual
project and the larger Project Jupyter organization. Make sure to include any links to the individual project’s demo
notebooks, if available.

For example, here is the [Resources section from jupyter/notebook]:(https://github.com/jupyter/notebook/blob/master/README.md#resources)

Checklist adding docs to a new or existing GitHub Repo

• [ ] Add a link to documentation in repo description (requires GitHub repo privileges)

• [ ] Add badges to README (Edit README.md and submit pull request)

• [ ] Add resources section to README (Edit README.md and submit pull request)

Dated: 1-4-2016 Revised: 1-7-2016

Building automatically on ReadTheDocs

This explains how to automatically rebuild documentation on ReadtheDocs every time a pull request is merged into its
corresponding GitHub repo.

Using the ReadTheDocs service

Webhooks and services can be enabled in GitHub repo settings to allow third party services such as ReadTheDocs.
The ReadTheDocs service rebuilds the project documentation whenever a pull request is merged into the GitHub repo.
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Navigate to Settings

Each GitHub repo has a Settings tab at the far right of the repo menubar. Navigate to Settings and then the Webhooks
& services submenu tab.

Add the ReadTheDocs service

Select Add service and enter ReadTheDocs in the Available Services input box.

The Services/Add ReadTheDocs window will open. Press the green Add service button to activate the ReadTheDocs
service.
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Success

The ReadTheDocs service is added successfully. The service will take effect on the next merged pull request to the
project repo.

Created: 01-07-2016

Supporting translations of documentation

We support and encourage the translation of Jupyter documentation to other languages as one way of making our
community more inclusive and diverse. We are working toward having a consistent model for translation of Sphinx
documentation across Jupyter projects based on prior work in the Python and Django communities. This project
(https://jupyter.readthedocs.io) and the Jupyter Docker Stacks project are early adopters, meant to prove out the work-
flows described on this page.

Overview

After initial project setup, changes to Sphinx documentation and its translations follow a continuous integration (CI)
and continuous deployment (CD), much like project source code.
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Who is involved in translating documentation

Anyone is welcome to participate in writing and translating Jupyter documentation by participating in the workflow
described below. This workflow has a handful of actors and components:

• A person who makes changes to the English project documentation

• A person who translates snippets of text in the English documentations into another language (locale)

• Portable object files (.po) for the source documentation language (e.g., U.S. English, en-US) and for other locales
(e.g., Brazilian Portuguese, pt-BR; Moroccan Arabic, ar-MA)

• A continuous integration system like TravisCI, CircleCI, or GitHub Actions, responsible for

• ReadTheDocs, our preferred service for building and hosting documentation

• Transifex, a localization platform with free plans for open source projects, a friendly web interface, and support
for .po files
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The translation process

1. A user creates or edits reStructuredText (.rst) or Markdown (.md) documents written in U.S. English.

2. The user submits a pull request on GitHub.

3. A project maintainer reviews and merges the pull request.

4. ReadTheDocs runs Sphinx to convert U.S. English source documents into HTML (e.g.,
https://jupyter.readthedocs.io/en/latest/architecture/how_jupyter_ipython_work.html)

5. Meanwhile, the CI service runs Sphinx commands to extract translatable messages from U.S. English documents
into en-US portable object (.po) files. For example:

# 5164fcd91a8a4700ac734562245773ad
#: ../../source/architecture/how_jupyter_ipython_work.rst:13
#: f68a21b0bc884dad9021c276e6490e6d
msgid ""

(continues on next page)
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(continued from previous page)

"The IPython kernel that provides computation and communication with the "
"frontend interfaces, like the notebook"
msgstr ""

6. The CI service commits the English .po files to the project on GitHub. (e.g.,
https://github.com/jupyter/jupyter/commit/1330bc409842d8b8a7bbb3a1c63259c34a543be0)

7. Transifex makes the messages in the English .po files available for translation in all configured languages.

8. Over time, translation teams use the Transifex web application to create, review, and update translations for those
languages (e.g., https://docs.transifex.com/translation/translating-with-the-web-editor)

9. Transifex submits a pull request to the GitHub project containing a localized .po file when all
of the English messages have been translated, and optionally reviewed, for a given language (e.g.,
https://github.com/jupyter/jupyter/pull/485). For example:

# 5164fcd91a8a4700ac734562245773ad
#: ../../source/architecture/how_jupyter_ipython_work.rst:13
msgid ""
"The IPython kernel that provides computation and communication with the "
"frontend interfaces, like the notebook"
msgstr ""
"The IPython kernel que fornece o cálculo e a comunicação com as interfaces "
"de frontend como o notebook"

10. A project maintainer reviews and merges the pull request.

11. ReadTheDocs once again runs Sphinx to convert U.S. English source documents into HTML.

12. ReadTheDocs also runs Sphinx to load localized .po files, substitute translations into
the original English text, and convert those translated documents into HTML (e.g.,
https://jupyter.readthedocs.io/pt_BR/latest/architecture/how_jupyter_ipython_work.html)

Note: We recognize this flow assumes documentation starts life written in U.S. English. We should look into removing
this assumption in the future if it becomes a significant barrier to new contributions.

Community translator workflows

We are delighted when members of the Jupyter community want to help translate documentation. We use Transifex to
on-board translators in a friendly web interface without requiring knowledge of git, GitHub, Sphinx, or other software
developer tools.

Creating translations

Getting Started as a Translator is an excellent on-boarding guide for new Transifex users. Follow the instructions to
create an account. When prompted to join a team, look for jupyter-meta-documentation to start contributing translations
to this documentation site. Alternatively, visit https://www.transifex.com/project-jupyter/jupyter-meta-documentation/
after creating your account and request to join the project. A project maintainer or language team coordinator will
review and approve your request.
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Reviewing translations

Transifex supports Reviewing Translations, peer review by members of a language team, to ensure translation quality.
Project maintainers can choose whether Transifex should immediately send a pull request when translations of all text
in a document are available or delay submitting a pull request until after all of those translations are also reviewed (the
current setting for this project).

Coordinating translation teams

Project maintainers can also grant Transfex team members the role of language coordinator. Language coordinators
have permission to invite users to language teams, approve or deny join requests, assign language team roles, and
perform other administrative actions for a particular project language. Empowering trusted members of the community
as coordinators can help grow translation teams without software developer involvement.

Administrator workflows

The translation CI/CD workflow described above requires configuration in GitHub and in Transifex to function. Project
maintainers can follow the instructions below to enable translations for their Sphinx documentation.

Creating a Transifex organization

Transifex organizes translation projects under organizations that mirror organizations and repositories on
GitHub. At present, only the https://github.com/jupyter organization has a corresponding org on Transifex
(https://www.transifex.com/project-jupyter/public/) with the following organization administrators:

• @choldgraf

• @parente

• @willingc

GitHub users with permissions to install applications in a GitHub org can follow these instructions to create a new
Transifex-GitHub organization link (e.g., for https://github.com/jupyterhub, https://github.com/jupyterlab).

1. Create a new user account at https://transifex.com.

2. Complete the sign-up wizard.

3. Create and name a new organization.

4. Click the organization drop down in the top right of the Transifex dashboard page and select Organization Set-
tings.

5. Click Details in the left sidebar.

6. Click inviting administrators in the Management section to add additional admins to the Transifex org.

7. Click Manage integrations in the left sidebar.

8. Click Install the Transifex app in the GitHub section.

9. Select the GitHub organization to associate with the new Transifex organization.

10. Select the repositories that Transifex will have permission to access.

11. Return to the tab where you clicked Install the Transifex app and click authorize Transifex in the GitHub section.

12. Choose the GitHub organization you just configured in the popup dialog.
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Note that you can revise the GitHub-Transifex integration at any time by visiting
https://github.com/settings/installations.

Creating a Transifex project

Transifex organization administrators can follow the instructions below to configure new translation projects for GitHub
projects in the GitHub org corresponding to the one on Transifex.

1. Visit https://www.transifex.com.

2. Sign in with the appropriate admin user account for the organization.

3. Click the organization drop down in the top right of the Transifex dashboard page and select Organization Set-
tings.

4. Click Create new project in the lower left sidebar.

5. Name the translation project after the project on GitHub.

6. Select Public as the privacy type, indicate that the project is open source, and provide the GitHub URL for the
repository.

7. Select a file-based project.

8. Create a new team for the project.

9. Select English (en) as the source language.

10. Select known target languages. (You can add these later as well.)

11. Click Create project.

12. Click Settings under the project name in the left sidebar.

13. Click the Maintainers tab.

14. Invite additional project maintainers, typically software developers who will be responsible for maintaining the
continuous integration and bootstrapping language teams.

Configuring languages and teams

Transifex organization admins and project managers can add translation languages to a project.

1. Visit https://www.transifex.com.

2. Sign in with the appropriate admin user account for the organization.

3. Click Languages under the project name in the left sidebar.

4. Click Edit languages.

5. Add or remove target translation languages.

6. Click Apply.

Organization admins, project maintainers, and team managers can add users to translation teams with the roles of
language coordinator, reviewer, or translator.

1. Click Teams in the top nav bar.

2. Click the Invite Collaborators button in the top right.
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3. Enter the username, email address, or full name of a person to add to the project. Note that the autocomplete
in this field does not always display a popup for the user you wish to invite. Confirm you’ve entered the correct
value and move on.

4. Select the role to assign to the user.

5. If the role applies to a specific team, select the team.

6. If the role applies to a specific language, select the language.

7. Click Invite more to enter additional users or Send invitation.

Configuring Transifex-GitHub integration

After configuring organization and project resources on Transifex, project developers can:

• configure Sphinx to produce .po files for the source language and read .po files containing translations

• configure Transifex to watch for source language .po file changes

• configure the project CI service to update source language .po files when contributors make changes to the
source documentation

The instructions in this section assume a git repository already contains Sphinx documentation in the following directory
structure:

my-project/
docs/
build/ # built sphinx artifacts go here
source/ # documentation source is in here
conf.py # sphinx config file
index.rst # root of the documentation

requirements.txt # sphinx, sphinx-intl, etc.

Project developers can do the following to configure Sphinx to seed source .po files and recognization translation .po
files.

1. Add sphinx-intl to your Sphinx project requirements.txt or environment.yaml if it does not already
exist.

2. Run sphinx-intl create-txconfig in the docs/ directory.

3. Add the following to the Sphinx source/conf.py file.

# -- Translation -------------------------------------------------------------

gettext_uuid = True
locale_dirs = ["locale/"]

3. Run make gettext to extract all strings from the English source documentation.

4. Run sphinx-intl update -l en to generate the English source .po files.

5. Submit, review, and merge a pull request with the changes and generated .po files.

After merging the pull request, link to the Transifex project to the GitHub repository.

1. Visit https://www.transifex.com.

2. Click Settings under the project name in the left sidebar.

3. Click the Integrations tab.
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4. Click Link Repository in the GitHub section.

5. Select the appropriate GitHub repository and integration branch. Then click Next.

6. Copy and paste the following configuration into the dialog, adjusting the commented values as appropriate, and
then click Next.

filters:
- filter_type: dir
file_format: PO
source_file_extension: po
# Change this if you selected a different source language during project setup
source_language: en
# The path in the GitHub repository where the source .po files reside
source_file_dir: "docs/source/locale/en/LC_MESSAGES"
# The path in the GitHub repository where translation .po files reside
translation_files_expression: "docs/source/locale/<lang>/LC_MESSAGES"

7. Select when Transifex will submit translations a back to the repository. Then click Save & Sync.

8. Click Close.

9. Watch the sync status progress.

10. Click Resources in the left sidebar.

11. Click one of the .po files to see translation progress by language.

12. Click one of the languages to see details about translation progress, translate text, and review translations. See
the Translator workflows section above for details.

After confirming the initial English .po files have reached Transifex, set up continuous integration to ensure source
strings are kept up-to-date in Transifex whenever the English documentation changes. The steps to accomplish this end
vary depending on the CI provider. The following describes how what to do when using GitHub Actions.

1. Create a new GitHub actions workflow file .github/workflows/gettext.yml in the project.

2. Add the following content to the file. Note that secrets.GITHUB_TOKEN is a built-in secret, not something you
need to configure ahead of time.

name: Extract Translatable Strings

# Run on all branch pushes
on:
push:
paths:
- "docs/source/**"
- "!docs/source/locale/**"
- ".github/workflows/gettext.yml"

jobs:
gettext:
runs-on: ubuntu-latest
steps:
- name: Checkout Code
uses: actions/checkout@master

- name: Set up Python
uses: actions/setup-python@v2
with:

(continues on next page)
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(continued from previous page)

python-version: "3.x"
- name: Install dependencies
working-directory: docs
run: pip install -r requirements.txt

- name: Extract source strings
working-directory: docs
run: |

make gettext
sphinx-intl update -l en

- name: Push to master
# Only commit changes to master if master just changed
if: github.ref == 'refs/heads/master'
uses: mikeal/publish-to-github-action@master
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

3. Submit, review, and merge a pull request containing the workflow YAML.

Once you complete the steps in this section, any changes to the source English documentation on the master branch are
pulled into Transifex for translation. Likewise, any translations completed on Transifex are submitted as pull requests
back to the project on GitHub.

Hosting translations on ReadTheDocs

ReadTheDocs supports building HTML documentation sites from a single GitHub project and its translations. Ad-
ministrators of the source language documentation project on ReadTheDocs can following these instructions to enable
builds for other languages.

1. Visit https://readthedocs.org/dashboard/

2. Note the name of existing ReadTheDocs project containing your source language (e.g., jupyter).

3. Click Import a Project.

4. Click Import Manually.

5. Enter the project name you noted above suffixed with a target language locale (e.g., jupyter-es,
jupyter-pt-br).

6. Enter the GitHub URL of the project.

7. Check Edit advanced project options.

8. Click Next.

9. Select the name of the target language from the Language drop down (e.g. es -> Spanish, es-mx -> Mexican
Spanish, pt-br -> Brazillian Portuguese).

10. Click Finish.

11. Return to the list of projects at https://readthedocs.org/dashboard/

12. Click the project containing the source language.

13. Click Admin.

14. Click Translations.

15. Choose the name of the translation project created in step 5 from the Project drop down.
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16. Click Add.

17. Repeat these steps for all other languages the project supports.

Now, any time you merge a pull request from Transifex containing .po translation file updates, ReadTheDocs will build
both the source documentation site as well as sites for all supported languages. ReadTheDocs will associate the sites
with one another and make them accessible via language links in a popup.

Reference

https://github.com/parente/helloworld-transifex-rtd is a mini-project configured to support the entire workflow de-
scribed in this document.

This section helps a contributor set up the documentation infrastructure for a new project or an existing project without
Sphinx documentation.

Documentation helps guide new users, fosters communication between developers, and shares tips and best practices
with other community members. That’s why the Jupyter project is focused on documenting new features and to keeping
the documentation up-to-date.

3.5.4 Communications Guide

Contents

• Blog

– Technical overview

– Basic workflow from blog idea to published post

– Creating a draft
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∗ Title and metadata

∗ Working with images

∗ Links

– Draft review

∗ Ask for a review

– Editorial acceptance

∗ Publishing the post

∗ Changing an existing post

· Posts Updates

• Newsletter

• Website

Blog

We publish our blog at https://blog.jupyter.org. We welcome ideas for posts or guest posts to the Jupyter blog. If you
have a suggestion for a future post, please feel free to share your idea with us. We would like to discuss the idea with
you.

Do you enjoy writing? Please contact us about becoming a guest blogger. We can help guide you through the process
of creating a post.

Technical overview

Jupyter’s blog uses the Ghost blog platform for its contributor flexibility and ease of use. Jupyter’s blog is deployed at
https://blog.jupyter.org.

Basic workflow from blog idea to published post

There are several major steps in the workflow from blog idea to a published post including:

• Be inspired to write a post

• Send us a message on the Jupyter mailing list and ask us for an author account on our blog

• Creating a draft

• Draft Review

• Editorial acceptance

• Publishing the post

We’ll cover each of these as well as how to update a post once it has been published.
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Creating a draft

Title and metadata

Always check in the metadata fields that a blog post has a title and a canonical URL. It is possible to put the date in the
canonical URL, in particular for events like jupyter-day, that can occur several times. The date of the event can differ
from the date of the blog post.

Once a post is published, never change the post’s title or the url. These changes will break links of tweets and RSS
feeds that have already referenced the existing, published URL. Keep in mind that when publishing some platforms
cache the url immediately; as a result changing the title will direct people to a 404 page.

Title and metadata can always be refined after the actual content of the blog is written, but should not be changed after
publication. As a guest you do not have to worry about metadata, the editor or admins will take care of that.

Working with images

Try not to link to external images. If you want to put an image in the post, insert ![]() in the editor view and drag and
drop an image from your desktop into the newly created field in the preview. External images can change, and can break
the blog post if they are taken down. This cannot append if you drag and drop images. Moreover, these images will be
served from the same CDN (Content Delivery Network) as the blog, which will insure the best overall experience for
our readers.

The featured image you see at the top of a blog posts is set from within the metadata field, not using the ![](). The
featured image is treated differently than inlined images by many feedreaders (especially on mobile) and allows a user
on a slow connection to read the content of the blog earlier, which is a much better experience for the user than waiting
for the featured image to render.

Links

Do not use minified links when possible. The multiple redirects of minified links degrades the mobile browsing expe-
rience. If you need analytics of the number of page views, this information is tracked by Google Analytics.

Draft review

Ask for a review

Once you think you are done, ask someone else to reread your post, and check the various parameters that you might
have forgotten before publishing. You are not on your own, this is teamwork, we are here to help you. If we do things
in a hurry you will probably spend more time fixing mistakes that actually doing things right in a first place.
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Editorial acceptance

Publishing the post

Usually an editor or admin will take care of publishing the post. The task of the Editor/Admin is to check all metadata
are correctly set, that no external images are used, as well as all other quality check describe before.

It is then just a matter of making th post visible to everyone.

Changing an existing post

Posts Updates

Blog subscribers may receive notification at every update. So use updates and fixes parsimoniously. It is OK to wait a
few hours to fix a typo.

If some substantial updates have to be made, like change of location, time etc, please insert an [Update] section at top
(or bottom of the blog post depending on importance) with the Date/Time of the update. If the information in the body
of the blog is wrong, try not to replace it, and just use strike-through to mark it as obsolete. This would help reader
determine which information is correct when dealing with multiple source giving different information.

Newsletter

Documentation in progress.

Website

Documentation in progress.

3.5.5 IPython Development Guide (source: old IPython wiki)

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

IPython does all of its development using GitHub. All of our development information is hosted on this GitHub wiki.
This page indexes all of that information. Developers interested in getting involved with IPython development should
start here.

IPython on GitHub

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

Notes on working with GitHub
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Milestones

• 100% of confirmed issues should have a milestone.

• An issue should never be closed without a milestone.

• All pull requests should have a milestone.

• All issues closed should be marked with the next release milestone, next backport milestone, or no action.

• Open issues should only lack a milestone if:

– more clarification is required (label: needs-info)

• In general, there will be four milestones with open issues:

– next minor release. This milestone contains issues that should be backported for the next minor release.
See below for information on backporting.

– next major release. This should be the default milestone of all issues. As the release approaches, issues
can be explicitly bumped to next release + 1.

– next major release + 1. Only issues that we are confident will not be included in the next release go here.
This milestone should be mostly empty until relatively close to release.

– wishlist. This is the milestone for issues that we have no immediate plans to address.

• The remaining milestone is no action for open or closed issues that require no action:

– Not actually an issue (e.g. questions, discussion, etc.)

– Duplicate of an existing Issue

– Closed because we won’t fix it

– When an issue is closed with no action, it means that the issue will not be fixed, or it was not an issue at
all.

• When closing an issue, it should always have one of these milestones:

– next minor release because the issue has been addressed

– next major release because the issue has been addressed

– no action because the issue will not be addressed, or it is a duplicate/non-issue.

In general: When in doubt, mark with next release. We can always push back when we get closer to a given release.

Labels and issues

Issues should always be labeled once they are confirmed (not necessary for issues that are still being clarified, or may
be duplicates or not issues at all).

Some significant labels:

• needs-info: issue needs more information from submitter before progress can be made

• bug: errors are raised, or unintended behavior occurs

• enhancement: improvements that are not bugs

• backport-X.Y.Z: Any fix for this issue should be backported to the maintenance branch. backports are expressed
with milestones, starting with 2.1.

• prio-foo: a priority level for ranking issues - nonessential, but prio-high/low are useful for explicitly promot-
ing/demoting issues, particularly when nearing release.
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• ClosedPR: This issue is a reminder for a PR that was closed for going stale.

• sprint-friendly: Obvious or easy fixes, where

All confirmed issues should at least have a bug or enhancement label, and be marked with any affected components (e.g
parallel, qtconsole, htmlnotebook), or particular sources of error (e.g. py3k or unicode) if we have appropriate
labels.

The sprint-friendly label is probably the best place for new contributors to start.

Pull Requests

• All work is submitted via Pull Requests.

• Pull Requests can be submitted as soon as there is code worth discussing. Pull Requests track the branch, so
you can continue to work after the PR is submitted. Review and discussion can begin well before the work is
complete, and the more discussion the better. The worst case is that the PR is closed.

• Pull Requests that have stalled should be closed (see [[our policy on closing PRs|Dev: Closing Pull Requests]])

• Pull Requests should always be made against master (backporting PRs is described below).

• Pull Requests should be tested, if feasible:

– bugfixes should include regression tests

– new behavior should at least get minimal exercise

Travis does a pretty good job testing IPython and Pull Requests, but it may make sense to manually perform tests
(possibly with our test_pr script), particularly for PRs that affect IPython.parallel or Windows.

Opening an Issue

When opening a new issue, please take the following steps:

1. Search GitHub and/or Google for your issue to avoid duplicate reports. Keyword searches for your error messages
are most helpful.

2. If possible, try updating to master and reproducing your issue, because we may have already fixed it.

3. Try to include a minimal reproducible test case

4. Include relevant system information. Start with the output of:

python -c "import IPython; print(IPython.sys_info())"

And include any relevant package versions, depending on the issue, such as matplotlib, numpy, Qt, Qt bindings
(PyQt/PySide), tornado, web browser, etc.
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Backporting

• We should keep an A.x maintenance branch for backporting fixes from master.

• That branch shall be called A.x, e.g. 2.x, not 2.1. This way, there is only one maintenance branch per release
series.

• When an Issue is determined to be appropriate for backporting, it should be marked with the A.B milestone.

• Any Pull Request which addresses a backport issue should also receive the same milestone.

• Patches are backported to the maintenance branch by applying the pull request patch to the maintenance branch
(currently with the backport_pr script).

The Perfect Pull Request

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

A brief guide to making and reviewing pull requests.

1. It works

The code does what it’s supposed to!

2. It works on all of the platforms that IPython officially supports

IPython has to work on:

• Linux of various kinds, Windows & Mac

• Python 2 & 3

3. Handles unicode issues properly

Much of our code base deals with strings and unicode. This needs to be done in a manner that is unicode aware and
works on Python 2 and 3. [This article] (http://www.joelonsoftware.com/articles/Unicode.html) is a good intro to
unicode.

4. Adheres to our coding style

Coding style refers to how source code is formatted and how variables, functions, methods and classes are named. Your
code should follow our coding style, which is described [[here|Dev: Coding style]].
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5. Clean & commented

The code should be well organized, and have inline comments where appropriate. When we look at the code, it should
be clear what it’s doing and why. It should not break abstractions that we have established in the project.

6. Tested

If it fixes a bug, the pull request should ideally add an automated test that fails without the fix, and passes with it.
Normally it should be sufficient to copy an existing test and tweak it. New functionality should come with its own tests
as well. Details about testing IPython can be found [[here|Dev: Testing]].

7. Well documented

Don’t forget to update docstrings, and any relevant parts of the official documentation. New features or significant
changes warrant an entry in the What’s New section too. Details about documenting IPython can be found [[here|Dev:
Documenting IPython]].

Coding Style

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

This document describes our coding style. Coding style refers to the following:

• How source code is formatted (indentation, spacing, etc.)

• How things are named (variables, functions, classes, modules, etc.)

General coding conventions

In general, we follow the standard Python style conventions as described in Python’s PEP 8, the official Python Style
Guide.

Other general comments:

• In a large file, top level classes and functions should be separated by 2 lines to make it easier to separate them
visually.

• Use 4 spaces for indentation, never use hard tabs.

• Keep the ordering of methods the same in classes that have the same methods. This is particularly true for classes
that implement similar interfaces and for interfaces that are similar.
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Naming conventions

For naming conventions, we also follow the guidelines of PEP 8. Some of the existing code doesn’t honor this perfectly,
but for all new and refactored IPython code, we’ll use:

• All lowercase module names. Long module names can have words separated by underscores
(really_long_module_name.py), but this is not required. Try to use the convention of nearby files.

• CamelCase for class names.

• lowercase_with_underscores for methods, functions, variables and attributes.

• Implementation-specific private methods will use _single_underscore_prefix. Names with a leading dou-
ble underscore will only be used in special cases, as they makes subclassing difficult (such names are not easily
seen by child classes).

• Occasionally some run-in lowercase names are used, but mostly for very short names or where we are implement-
ing methods very similar to existing ones in a base class (like runlines()where runsource() and runcode()
had established precedent).

• The old IPython codebase has a big mix of classes and modules prefixed with an explicit IP of ip. This is not
necessary and all new code should not use this prefix. The only case where this approach is justified is for classes
or functions which are expected to be imported into external namespaces and a very generic name (like Shell)
that is likely to clash with something else. However, if a prefix seems absolutely necessary the more specific IPY
or ipy are preferred.

• All JavaScript code should follow these naming conventions as well.

Attribute declarations for objects

In general, objects should declare, in their class, all attributes the object is meant to hold throughout its life. While
Python allows you to add an attribute to an instance at any point in time, this makes the code harder to read and requires
methods to constantly use checks with hasattr() or try/except calls. By declaring all attributes of the object in the class
header, there is a single place one can refer to for understanding the object’s data interface, where comments can explain
the role of each variable and when possible, sensible defaults can be assigned.

If an attribute is meant to contain a mutable object, it should be set to None in the class and its mutable value should be
set in the object’s constructor. Since class attributes are shared by all instances, failure to do this can lead to difficult to
track bugs. But you should still set it in the class declaration so the interface specification is complete and documented
in one place.

A simple example:

class Foo(object):
# X does..., sensible default given:
x = 1
# y does..., default will be set by constructor
y = None
# z starts as an empty list, must be set in constructor
z = None

def __init__(self, y):
self.y = y
self.z = []
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New files

When starting a new Python file for IPython, you can use the following template as a starting point that has a few
common things pre-written for you.

Documenting IPython

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

When contributing code to IPython, you should strive for clarity and consistency, without falling prey to a style strait-
jacket. Basically, ‘document everything, try to be consistent, do what makes sense.’

By and large we follow existing Python practices in major projects like Python itself or NumPy, this document provides
some additional detail for IPython.

Standalone documentation

All standalone documentation should be written in plain text (.txt) files using reStructuredText [reStructuredText]_ for
markup and formatting. All such documentation should be placed in the directory docs/source of the IPython source
tree. Or, when appropriate, a suitably named subdirectory should be used. The documentation in this location will
serve as the main source for IPython documentation.

The actual HTML and PDF docs are built using the Sphinx [Sphinx]_ documentation generation tool. Once you have
Sphinx installed, you can build the html docs yourself by doing:

$ cd ipython-mybranch/docs
$ make html

Our usage of Sphinx follows that of matplotlib [Matplotlib]_ closely. We are using a number of Sphinx tools and
extensions written by the matplotlib team and will mostly follow their conventions, which are nicely spelled out in their
documentation guide [MatplotlibDocGuide]_. What follows is thus a abridged version of the matplotlib documentation
guide, taken with permission from the matplotlib team.

If you are reading this in a web browser, you can click on the “Show Source” link to see the original reStricturedText
for the following examples.

A bit of Python code:

for i in range(10):
print i,

print "A big number:",2**34

An interactive Python session:

>>> from IPython.utils.path import get_ipython_dir
>>> get_ipython_dir()
'/home/fperez/.config/ipython'

An IPython session:
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In [7]: import IPython

In [8]: print "This IPython is version:",IPython.__version__
This IPython is version: 0.9.1

In [9]: 2+4
Out[9]: 6

A bit of shell code:

cd /tmp
echo "My home directory is: $HOME"
ls

Docstring format

Good docstrings are very important. Unfortunately, Python itself only provides a rather loose standard for docstrings
[PEP257]_, and there is no universally accepted convention for all the different parts of a complete docstring. However,
the NumPy project has established a very reasonable standard, and has developed some tools to support the smooth
inclusion of such docstrings in Sphinx-generated manuals. Rather than inventing yet another pseudo-standard, IPython
will be henceforth documented using the NumPy conventions; we carry copies of some of the NumPy support tools to
remain self-contained, but share back upstream with NumPy any improvements or fixes we may make to the tools.

The NumPy documentation guidelines [NumPyDocGuide]_ contain detailed information on this standard, and for a
quick overview, the NumPy example docstring [NumPyExampleDocstring]_ is a useful read.

For user-facing APIs, we try to be fairly strict about following the above standards (even though they mean more verbose
and detailed docstrings). Wherever you can reasonably expect people to do introspection with:

In [1]: some_function?

the docstring should follow the NumPy style and be fairly detailed.

For purely internal methods that are only likely to be read by others extending IPython itself we are a bit more relaxed,
especially for small/short methods and functions whose intent is reasonably obvious. We still expect docstrings to be
written, but they can be simpler. For very short functions with a single-line docstring you can use something like:

def add(a, b):
"""The sum of two numbers.
"""
code

and for longer multiline strings:

def add(a, b):
"""The sum of two numbers.

Here is the rest of the docs.
"""
code

Here are two additional PEPs of interest regarding documentation of code. While both of these were rejected, the ideas
therein form much of the basis of docutils (the machinery to process reStructuredText):

• Docstring Processing System Framework
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• Docutils Design Specification

note

In the past IPython used epydoc so currently many docstrings still use epydoc conventions. We will
update them as we go, but all new code should be documented using the NumPy standard.

Building and uploading

The built docs are stored in a separate repository. Through some github magic, they’re automatically exposed as a
website. It works like this:

• You will need to have sphinx and latex installed. In Ubuntu, install texlive-latex-recommended
texlive-latex-extra texlive-fonts-recommended. Install the latest version of sphinx from PyPI (pip
install sphinx).

• Ensure that the development version of IPython is the first in your system path. You can either use a virtualenv,
or modify your PYTHONPATH.

• Switch into the docs directory, and run make gh-pages. This will build your updated docs as html and pdf,
then automatically check out the latest version of the docs repository, copy the built docs into it, and commit
your changes.

• Open the built docs in a web browser, and check that they’re as expected.

• (When building the docs for a new tagged release, you will have to add its link to index.rst, then run python
build_index.py to update index.html. Commit the change.)

• Upload the docs with git push. This only works if you have write access to the docs repository.

• If you are building a version that is not the current dev branch, nor a tagged release, then you must run gh-pages.py
directly with python gh-pages.py <version>, and not with make gh-pages.

Lab Meetings on Air

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

Academic labs have long had the tradition of the weekly lab meeting, where all topics of interest to the lab are discussed.
IPython has strong roots in academia, but it is also an open source project that needs to engage an active international
community. So while our goal with IPython is not to publish the next paper, we’ve been thinking about the value these
regular discussions bring to how teams work on sustained efforts involving difficult problems, and wanted to bring that
bit of academic practice into the open source workflow. So we have decided to conduct weekly “lab meetings” for
IPython, that will be held publicly using a Google Hangout on Air.
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Logistics

We are trying to keep things simple and with a minimum of new moving parts:

• Meetings happen on Tuesdays at 10am California time (i.e. UTC-8 or -7 depending on the time of year).

• We broadcast the meeting as it happens via G+ and leave the public YouTube link afterwards.

• During the meeting, all chat that needs to happen by typing can be done on our Gitter chat room.

• We keep a running document with minutes of the meeting on HackPad where we summarize main points. (2015
part 1)

We welcome and encourage help from others in updating these minutes during the meeting, but we’ll make no major
effort in ensuring that they are a detailed and accurate record of the whole discussion. We simply don’t have the time
for that.

Prior meetings

You can find a list of the videos on the ipythondev YouTube user page.

Policy on Closing Pull Requests

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

IPython has the following policy on closing pull requests. The goal of this policy is to keep our pull request queue
small and allow us to focus on code that is being actively developed and has a strong chance of being merged in master
soon.

A pull request will be closed when:

• It has been reviewed, but has sat for a month or more waiting for the submitter to commit more code to address
the comments.

• The review process has uncovered larger design or technical issues that extend beyond the details of the specific
pull request.

– In particular, we do not accept whole large “cleanup” changes which do not address any specific bug. This
includes trailing whitespace, PEP8, etc. One of the reasons is that such massive cleanup provide plenty of
opportunities to introduce new and subtle bugs.

In general we will not close pull requests because of a lack of review. If a pull request has sat for a month or more
without review, we need to kick ourselves and get to reviewing it.

When a pull request is closed we will do the following:

• Post a github message to the pull request to confirm that everyone is fine with closing the pull request. This
message should cite this policy.

• Open an issue to track the pull request. This issue should describe what would be needed in order to reopen the
pull request.

• Post a github message to the pull request encouraging the submitter to continue with the work and detail what
issues need to be addressed in order for the pull request to be reopened.
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This policy was discussed in the following thread:

https://mail.scipy.org/pipermail/ipython-dev/2012-August/010025.html

Example Message:

Hi,

This PR has been inactive for 1 month now, so we are going to close it and open an
issue to reference it. We try to keep our pull request queue small and focused on
active work. We encourage you to reopen the pull request if and when you
continue to work on this. Please contact us if you have any questions.

Thanks for contributing.

see https://github.com/ipython/ipython/wiki/Dev%3A-Closing-pull-requests/ for
our policies on closing pull requests.

Testing IPython for users and developers

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

Overview

It is extremely important that all code contributed to IPython has tests. Tests should be written as unittests, doctests or
other entities that the IPython test system can detect. See below for more details on this.

Each subpackage in IPython should have its own tests directory that contains all of the tests for that subpackage. All
of the files in the tests directory should have the word “tests” in them to enable the testing framework to find them.

In docstrings, examples (either using IPython prompts like In [1]: or ‘classic’ python >>> ones) can and should be
included. The testing system will detect them as doctests and will run them; it offers control to skip parts or all of
a specific doctest if the example is meant to be informative but shows non-reproducible information (like filesystem
data).

If a subpackage has any dependencies beyond the Python standard library, the tests for that subpackage should be
skipped if the dependencies are not found. This is very important so users don’t get tests failing simply because they
don’t have dependencies.

The testing system we use is an extension of the nose test runner. In particular we’ve developed a nose plugin that
allows us to paste verbatim IPython sessions and test them as doctests, which is extremely important for us.
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Running the test suite

You can run IPython from the source download directory without even installing it system-wide or having configure
anything, by typing at the terminal:

python2 -c "import IPython; IPython.start_ipython();"

To start the web-based notebook you can use:

python2 -c "import IPython; IPython.start_ipython(['notebook']);"

In order to run the test suite, you must at least be able to import IPython, even if you haven’t fully installed the user-facing
scripts yet (common in a development environment). You can then run the tests with:

python -c "import IPython; IPython.test()"

Once you have installed IPython either via a full install or using:

python setup.py develop

you will have available a system-wide script called iptest that runs the full test suite. You can then run the suite with:

iptest [args]

By default, this excludes the relatively slow tests for IPython.parallel. To run these, use iptest --all.

Please note that the iptest tool will run tests against the code imported by the Python interpreter. If the command
python setup.py symlink has been previously run then this will always be the test code in the local directory via
a symlink. However, if this command has not been run for the version of Python being tested, there is the possibility
that iptest will run the tests against an installed version of IPython.

Regardless of how you run things, you should eventually see something like:

**********************************************************************
Test suite completed for system with the following information:
{'commit_hash': '144fdae',
'commit_source': 'repository',
'ipython_path': '/home/fperez/usr/lib/python2.6/site-packages/IPython',
'ipython_version': '0.11.dev',
'os_name': 'posix',
'platform': 'Linux-2.6.35-22-generic-i686-with-Ubuntu-10.10-maverick',
'sys_executable': '/usr/bin/python',
'sys_platform': 'linux2',
'sys_version': '2.6.6 (r266:84292, Sep 15 2010, 15:52:39) \n[GCC 4.4.5]'}

Tools and libraries available at test time:
curses matplotlib pymongo qt sqlite3 tornado wx wx.aui zmq

Ran 9 test groups in 67.213s

Status:
OK

If not, there will be a message indicating which test group failed and how to rerun that group individually. For example,
this tests the IPython.utils subpackage, the -v option shows progress indicators:
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$ iptest IPython.utils -- -v
..........................SS..SSS............................S.S...
.........................................................
----------------------------------------------------------------------
Ran 125 tests in 0.119s

OK (SKIP=7)

Because the IPython test machinery is based on nose, you can use all nose syntax. Options after -- are passed to nose.
For example, this lets you run the specific test test_rehashx inside the test_magic module:

$ iptest IPython.core.tests.test_magic:test_rehashx -- -vv
IPython.core.tests.test_magic.test_rehashx(True,) ... ok
IPython.core.tests.test_magic.test_rehashx(True,) ... ok

----------------------------------------------------------------------
Ran 2 tests in 0.100s

OK

When developing, the --pdb and --pdb-failures of nose are particularly useful, these drop you into an interactive
pdb session at the point of the error or failure respectively: iptest mymodule -- --pdb.

The system information summary printed above is accessible from the top level package. If you encounter a problem
with IPython, it’s useful to include this information when reporting on the mailing list; use:

.. code:: python

from IPython import sys_info print sys_info()

and include the resulting information in your query.

Testing pull requests

We have a script that fetches a pull request from Github, merges it with master, and runs the test suite on different
versions of Python. This uses a separate copy of the repository, so you can keep working on the code while it runs. To
run it:

python tools/test_pr.py -p 1234

The number is the pull request number from Github; the -p flag makes it post the results to a comment on the pull
request. Any further arguments are passed to iptest.

This requires the requests and keyring packages.
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For developers: writing tests

By now IPython has a reasonable test suite, so the best way to see what’s available is to look at the tests directory in
most subpackages. But here are a few pointers to make the process easier.

Main tools: IPython.testing

The IPython.testing package is where all of the machinery to test IPython (rather than the tests for its various
parts) lives. In particular, the iptest module in there has all the smarts to control the test process. In there, the
make_exclude function is used to build a blacklist of exclusions, these are modules that do not get even imported for
tests. This is important so that things that would fail to even import because of missing dependencies don’t give errors
to end users, as we stated above.

The decorators module contains a lot of useful decorators, especially useful to mark individual tests that should be
skipped under certain conditions (rather than blacklisting the package altogether because of a missing major depen-
dency).

Our nose plugin for doctests

The plugin subpackage in testing contains a nose plugin called ipdoctest that teaches nose about IPython syntax,
so you can write doctests with IPython prompts. You can also mark doctest output with # random for the output
corresponding to a single input to be ignored (stronger than using ellipsis and useful to keep it as an example). If
you want the entire docstring to be executed but none of the output from any input to be checked, you can use the #
all-random marker. The IPython.testing.plugin.dtexample module contains examples of how to use these;
for reference here is how to use # random:

def ranfunc():
"""A function with some random output.

Normal examples are verified as usual:
>>> 1+3
4

But if you put '# random' in the output, it is ignored:
>>> 1+3
junk goes here... # random

>>> 1+2
again, anything goes #random
if multiline, the random mark is only needed once.

>>> 1+2
You can also put the random marker at the end:
# random

>>> 1+2
# random
.. or at the beginning.

More correct input is properly verified:
>>> ranfunc()
'ranfunc'

(continues on next page)
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(continued from previous page)

"""
return 'ranfunc'

and an example of # all-random:

def random_all():
"""A function where we ignore the output of ALL examples.

Examples:

# all-random

This mark tells the testing machinery that all subsequent examples
should be treated as random (ignoring their output). They are still
executed, so if a they raise an error, it will be detected as such,
but their output is completely ignored.

>>> 1+3
junk goes here...

>>> 1+3
klasdfj;

In [8]: print 'hello'
world # random

In [9]: iprand()
Out[9]: 'iprand'
"""
return 'iprand'

When writing docstrings, you can use the @skip_doctest decorator to indicate that a docstring should not be treated
as a doctest at all. The difference between # all-random and @skip_doctest is that the former executes the example
but ignores output, while the latter doesn’t execute any code. @skip_doctest should be used for docstrings whose
examples are purely informational.

If a given docstring fails under certain conditions but otherwise is a good doctest, you can use code like the following,
that relies on the ‘null’ decorator to leave the docstring intact where it works as a test:

# The docstring for full_path doctests differently on win32 (different path
# separator) so just skip the doctest there, and use a null decorator
# elsewhere:

doctest_deco = dec.skip_doctest if sys.platform == 'win32' else dec.null_deco

@doctest_deco
def full_path(startPath,files):

"""Make full paths for all the listed files, based on startPath..."""

# function body follows...

With our nose plugin that understands IPython syntax, an extremely effective way to write tests is to simply copy and
paste an interactive session into a docstring. You can writing this type of test, where your docstring is meant only as
a test, by prefixing the function name with doctest_ and leaving its body absolutely empty other than the docstring.
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In IPython.core.tests.test_magic you can find several examples of this, but for completeness sake, your code
should look like this (a simple case):

def doctest_time():
"""
In [10]: %time None
CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
Wall time: 0.00 s
"""

This function is only analyzed for its docstring but it is not considered a separate test, which is why its body should be
empty.

JavaScript Tests

We currently use casperjs for testing the notebook javascript user interface.

To run the JS test suite by itself, you can either use iptest js, which will start up a new notebook server and test
against it, or you can open up a notebook server yourself, and then:

cd IPython/html/tests/casperjs;
casperjs test --includes=util.js test_cases

If your testing notebook server uses something other than the default port (8888), you will have to pass that as a
parameter to the test suite as well.

casperjs test --includes=util.js --port=8889 test_cases

Running individual tests

To speed up development, you usually are working on getting one test passing at a time. To do this, just pass the
filename directly to the casperjs test command like so:

casperjs test --includes=util.js test_cases/execute_code_cell.js

Wrapping your head around the javascript within javascript:

CasperJS is a browser that’s written in javascript, so we write javascript code to drive it. The Casper browser itself
also has a javascript implementation (like the ones that come with Firefox and Chrome), and in the test suite we get
access to those using this.evaluate, and it’s cousins (this.theEvaluate, etc). Additionally, because of the asyn-
chronous / callback nature of everything, there are plenty of this.then calls which define steps in test suite. Part of
the reason for this is that each step has a timeout (default of 5 or 10 seconds). Additionally, there are already conve-
nience functions in util.js to help you wait for output in a given cell, etc. In our javascript tests, if you see functions
which look_like_pep8_naming_convention, those are probably coming from util.js, whereas functions that
come with casper haveCamelCaseNamingConvention

Each file in test_cases looks something like this (this is test_cases/check_interrupt.js):

casper.notebook_test(function () {
this.evaluate(function () {

var cell = IPython.notebook.get_cell(0);
(continues on next page)
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cell.set_text('import time\nfor x in range(3):\n time.sleep(1)');
cell.execute();

});

// interrupt using menu item (Kernel -> Interrupt)
this.thenClick('li#int_kernel');

this.wait_for_output(0);

this.then(function () {
var result = this.get_output_cell(0);
this.test.assertEquals(result.ename, 'KeyboardInterrupt', 'keyboard interrupt␣

→˓(mouseclick)');
});

// run cell 0 again, now interrupting using keyboard shortcut
this.thenEvaluate(function () {

cell.clear_output();
cell.execute();

});

// interrupt using Ctrl-M I keyboard shortcut
this.thenEvaluate( function() {

IPython.utils.press_ghetto(IPython.utils.keycodes.I)
});

this.wait_for_output(0);

this.then(function () {
var result = this.get_output_cell(0);
this.test.assertEquals(result.ename, 'KeyboardInterrupt', 'keyboard interrupt␣

→˓(shortcut)');
});

});

For an example of how to pass parameters to the client-side javascript from casper test suite, see the casper.
wait_for_output implementation in IPython/html/tests/casperjs/util.js

Testing system design notes

This section is a set of notes on the key points of the IPython testing needs, that were used when writing the system
and should be kept for reference as it evolves.

Testing IPython in full requires modifications to the default behavior of nose and doctest, because the IPython prompt
is not recognized to determine Python input, and because IPython admits user input that is not valid Python (things like
%magics and !system commands.

We basically need to be able to test the following types of code:

• (1) Pure Python files containing normal tests. These are not a problem, since Nose will pick them up as long
as they conform to the (flexible) conventions used by nose to recognize tests.

• (2) Python files containing doctests. Here, we have two possibilities:

146 Chapter 3. Table of Contents



Jupyter Documentation, Release 4.1.1 alpha

• The prompts are the usual >>> and the input is pure Python.

• The prompts are of the form In [1]: and the input can contain extended IPython expressions.

In the first case, Nose will recognize the doctests as long as it is called with the --with-doctest flag. But the second
case will likely require modifications or the writing of a new doctest plugin for Nose that is IPython-aware.

• (3) ReStructuredText files that contain code blocks. For this type of file, we have three distinct possibilities for
the code blocks:

• They use >>> prompts.

• They use In [1]: prompts.

• They are standalone blocks of pure Python code without any prompts.

The first two cases are similar to the situation #2 above, except that in this case the doctests must be extracted from
input code blocks using docutils instead of from the Python docstrings.

In the third case, we must have a convention for distinguishing code blocks that are meant for execution from others
that may be snippets of shell code or other examples not meant to be run. One possibility is to assume that all indented
code blocks are meant for execution, but to have a special docutils directive for input that should not be executed.

For those code blocks that we will execute, the convention used will simply be that they get called and are considered
successful if they run to completion without raising errors. This is similar to what Nose does for standalone test
functions, and by putting asserts or other forms of exception-raising statements it becomes possible to have literate
examples that double as lightweight tests.

• (4) Extension modules with doctests in function and method docstrings. Currently Nose simply can’t find these
docstrings correctly, because the underlying doctest DocTestFinder object fails there. Similarly to #2 above,
the docstrings could have either pure python or IPython prompts.

Of these, only 3-c (reST with standalone code blocks) is not implemented at this point.

How to Compile .less Files

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

For testing your development work in CSS, you’ll need to compile the .less files to CSS. Make sure you have depen-
dencies that LESS requires, including fabric, node, and lessc. Follow the below steps to compile the .less files:

python setup.py css

Alternatively, you can:

$ cd ipython/IPython/html
$ fab css
[localhost] local: components/less.js/bin/lessc -x style/style.less style/style.min.css
[localhost] local: components/less.js/bin/lessc -x style/ipython.less style/ipython.min.
→˓css

Done
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Steps for Releasing IPython

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

This document contains notes about the process that is used to release IPython. Our release process is currently not
very formal and could be improved.

Most of the release process is automated by the release script in the tools directory of our main repository. This
document is just a handy reminder for the release manager.

0. Environment variables

You can set some env variables to note previous release tag and current release milestone, version, and git tag:

PREV_RELEASE=rel-1.0.0
MILESTONE=1.1
VERSION=1.1.0
TAG="rel-$VERSION"
BRANCH=master

These will be used later if you want to copy/paste, or you can just type the appropriate command when the time comes.
These variables are not used by scripts (hence no export).

1. Finish release notes

• If a major release:

• merge any pull request notes into what’s new:

python tools/update_whatsnew.py

• update docs/source/whatsnew/development.rst, to ensure it covers the major points.

• move the contents of development.rst to versionX.rst

• generate summary of GitHub contributions, which can be done with:

python tools/github_stats.py --milestone $MILESTONE > stats.rst

which may need some manual cleanup. Add the cleaned up result and add it to docs/source/whatsnew/
github-stats-X.rst (make a new file, or add it to the top, depending on whether it is a major release). You can
use:

git log --format="%aN <%aE>" $PREV_RELEASE... | sort -u -f

to find duplicates and update .mailmap. Before generating the GitHub stats, verify that all closed issues and pull
requests have appropriate milestones. This search should return no results.
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2. Run the tools/build_release script

This does all the file checking and building that the real release script will do. This will let you do test installations,
check that the build procedure runs OK, etc. You may want to also do a test build of the docs.

3. Create and push the new tag

Edit IPython/core/release.py to have the current version.

Commit the changes to release.py and jsversion:

git commit -am "release $VERSION"
git push origin $BRANCH

Create and push the tag:

git tag -am "release $VERSION" "$TAG"
git push origin --tags

Update release.py back to x.y-dev or x.y-maint, and push:

git commit -am "back to development"
git push origin $BRANCH

4. Get a fresh clone of the tag for building the release:

cd /tmp
git clone --depth 1 https://github.com/ipython/ipython.git -b "$TAG"

5. Run the release script

cd tools && ./release

This makes the tarballs, zipfiles, and wheels. It posts them to archive.ipython.org and registers the release with PyPI.

This will require that you have current wheel, Python 3.4 and Python 2.7.

7. Update the IPython website

• release announcement (news, announcements)

• update current version and download links

• (If major release) update links on the documentation page
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8. Drafting a short release announcement

This should include i) highlights and ii) a link to the html version of the What’s new section of the documentation.

Post to mailing list, and link from Twitter.

9. Update milestones on GitHub

• close the milestone you just released

• open new milestone for (x, y+1), if it doesn’t exist already

10. Celebrate!

IPython Sphinx Directive

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

The ipython directive is a stateful ipython shell for embedding in sphinx documents. It knows about standard ipython
prompts, and extracts the input and output lines. These prompts will be renumbered starting at 1. The inputs will be
fed to an embedded ipython interpreter and the outputs from that interpreter will be inserted as well. For example, code
blocks like the following:

.. code:: python3

In [136]: x = 2

In [137]: x**3
Out[137]: 8

will be rendered as

In [136]: x = 2

In [137]: x**3
Out[137]: 8

Note: This tutorial should be read side-by-side with the Sphinx source for this document because otherwise you will
see only the rendered output and not the code that generated it. Excepting the example above, we will not in general be
showing the literal ReST in this document that generates the rendered output.

The state from previous sessions is stored, and standard error is trapped. At doc build time, ipython’s output and std err
will be inserted, and prompts will be renumbered. So the prompt below should be renumbered in the rendered docs,
and pick up where the block above left off.

In [138]: z = x*3 # x is recalled from previous block

In [139]: z
(continues on next page)
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(continued from previous page)

Out[139]: 6

In [140]: print z
--------> print(z)
6

In [141]: q = z[) # this is a syntax error -- we trap ipy exceptions
------------------------------------------------------------

File "<ipython console>", line 1
q = z[) # this is a syntax error -- we trap ipy exceptions
^

SyntaxError: invalid syntax

The embedded interpreter supports some limited markup. For example, you can put comments in your ipython sessions,
which are reported verbatim. There are some handy “pseudo-decorators” that let you doctest the output. The inputs are
fed to an embedded ipython session and the outputs from the ipython session are inserted into your doc. If the output
in your doc and in the ipython session don’t match on a doctest assertion, an error will be

In [1]: x = 'hello world'

# this will raise an error if the ipython output is different
@doctest
In [2]: x.upper()
Out[2]: 'HELLO WORLD'

# some readline features cannot be supported, so we allow
# "verbatim" blocks, which are dumped in verbatim except prompts
# are continuously numbered
@verbatim
In [3]: x.st<TAB>
x.startswith x.strip

Multi-line input is supported.

In [130]: url = 'http://ichart.finance.yahoo.com/table.csv?s=CROX\
.....: &d=9&e=22&f=2009&g=d&a=1&br=8&c=2006&ignore=.csv'

In [131]: print url.split('&')
--------> print(url.split('&'))
['http://ichart.finance.yahoo.com/table.csv?s=CROX', 'd=9', 'e=22',

You can do doctesting on multi-line output as well. Just be careful when using non-deterministic inputs like random
numbers in the ipython directive, because your inputs are ruin through a live interpreter, so if you are doctesting random
output you will get an error. Here we “seed” the random number generator for deterministic output, and we suppress
the seed line so it doesn’t show up in the rendered output

In [133]: import numpy.random

@suppress
In [134]: numpy.random.seed(2358)

@doctest
In [135]: numpy.random.rand(10,2)

(continues on next page)
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(continued from previous page)

Out[135]:
array([[ 0.64524308, 0.59943846],
[ 0.47102322, 0.8715456 ],
[ 0.29370834, 0.74776844],
[ 0.99539577, 0.1313423 ],
[ 0.16250302, 0.21103583],
[ 0.81626524, 0.1312433 ],
[ 0.67338089, 0.72302393],
[ 0.7566368 , 0.07033696],
[ 0.22591016, 0.77731835],
[ 0.0072729 , 0.34273127]])

Another demonstration of multi-line input and output

In [106]: print x
--------> print(x)
jdh

In [109]: for i in range(10):
.....: print i
.....:
.....:

0
1
2
3
4
5
6
7
8
9

Most of the “pseudo-decorators” can be used an options to ipython mode. For example, to setup matplotlib pylab
but suppress the output, you can do. When using the matplotlib use directive, it should occur before any import of
pylab. This will not show up in the rendered docs, but the commands will be executed in the embedded interpreter and
subsequent line numbers will be incremented to reflect the inputs:

.. code:: python3

In [144]: from pylab import *

In [145]: ion()

In [144]: from pylab import *

In [145]: ion()

Likewise, you can set :doctest: or :verbatim: to apply these settings to the entire block. For example,

In [9]: cd mpl/examples/
/home/jdhunter/mpl/examples

(continues on next page)
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(continued from previous page)

In [10]: pwd
Out[10]: '/home/jdhunter/mpl/examples'

In [14]: cd mpl/examples/<TAB>
mpl/examples/animation/ mpl/examples/misc/
mpl/examples/api/ mpl/examples/mplot3d/
mpl/examples/axes_grid/ mpl/examples/pylab_examples/
mpl/examples/event_handling/ mpl/examples/widgets

In [14]: cd mpl/examples/widgets/
/home/msierig/mpl/examples/widgets

In [15]: !wc *
2 12 77 README.txt
40 97 884 buttons.py
26 90 712 check_buttons.py
19 52 416 cursor.py
180 404 4882 menu.py
16 45 337 multicursor.py
36 106 916 radio_buttons.py
48 226 2082 rectangle_selector.py
43 118 1063 slider_demo.py
40 124 1088 span_selector.py
450 1274 12457 total

You can create one or more pyplot plots and insert them with the @savefig decorator.

@savefig plot_simple.png width=4in
In [151]: plot([1,2,3]);

# use a semicolon to suppress the output
@savefig hist_simple.png width=4in
In [151]: hist(np.random.randn(10000), 100);

In a subsequent session, we can update the current figure with some text, and then resave

In [151]: ylabel('number')

In [152]: title('normal distribution')

@savefig hist_with_text.png width=4in
In [153]: grid(True)

You can also have function definitions included in the source.

In [3]: def square(x):
...: """
...: An overcomplicated square function as an example.
...: """
...: if x < 0:
...: x = abs(x)

(continues on next page)
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(continued from previous page)

...: y = x * x

...: return y

...:

Then call it from a subsequent section.

In [4]: square(3)
Out [4]: 9

In [5]: square(-2)
Out [5]: 4

Writing Pure Python Code

Pure python code is supported by the optional argument python. In this pure python syntax you do not include the
output from the python interpreter. The following markup:

.. code:: python

foo = 'bar'
print foo
foo = 2
foo**2

Renders as

foo = 'bar'
print foo
foo = 2
foo**2

We can even plot from python, using the savefig decorator, as well as, suppress output with a semicolon

@savefig plot_simple_python.png width=4in
plot([1,2,3]);

Similarly, std err is inserted

foo = 'bar'
foo[)

Comments are handled and state is preserved

# comments are handled
print foo

If you don’t see the next code block then the options work.

ioff()
ion()

Multi-line input is handled.
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line = 'Multi\
line &\
support &\
works'

print line.split('&')

Functions definitions are correctly parsed

def square(x):
"""
An overcomplicated square function as an example.
"""
if x < 0:

x = abs(x)
y = x * x
return y

And persist across sessions

print square(3)
print square(-2)

Pretty much anything you can do with the ipython code, you can do with a simple python script. Obviously, though it
doesn’t make sense to use the doctest option.

Pseudo-Decorators

Here are the supported decorators, and any optional arguments they take. Some of the decorators can be used as options
to the entire block (eg verbatim and suppress), and some only apply to the line just below them (eg savefig).

@suppress

execute the ipython input block, but suppress the input and output block from the rendered output. Also,
can be applied to the entire ..ipython block as a directive option with :suppress:.

@verbatim

insert the input and output block in verbatim, but auto-increment the line numbers. Internally, the inter-
preter will be fed an empty string, so it is a no-op that keeps line numbering consistent. Also, can be
applied to the entire ..ipython block as a directive option with :verbatim:.

@savefig OUTFILE [IMAGE_OPTIONS]

save the figure to the static directory and insert it into the document, possibly binding it into a minipage
and/or putting code/figure label/references to associate the code and the figure. Takes args to pass to the
image directive (scale, width, etc can be kwargs); see image options for details.

@doctest

Compare the pasted in output in the ipython block with the output generated at doc build time, and raise
errors if they donâ€™t match. Also, can be applied to the entire ..ipython block as a directive option
with :doctest:.
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Configuration Options

ipython_savefig_dir

The directory in which to save the figures. This is relative to the Sphinx source directory. The default is
html_static_path.

ipython_rgxin

The compiled regular expression to denote the start of IPython input lines. The default is re.compile(‘In
[(d+)]:s?(.*)s*’). You shouldn’t need to change this.

ipython_rgxout

The compiled regular expression to denote the start of IPython output lines. The default is
re.compile(‘Out[(d+)]:s?(.*)s*’). You shouldn’t need to change this.

ipython_promptin

The string to represent the IPython input prompt in the generated ReST. The default is ‘In [%d]:’. This
expects that the line numbers are used in the prompt.

ipython_promptout

The string to represent the IPython prompt in the generated ReST. The default is ‘Out [%d]:’. This expects
that the line numbers are used in the prompt.

Python 3 Compatibility Module

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

The IPython.utils.py3compat module provides a number of functions to make it easier to write code for Python
2 and 3. We also use 2to3 in the setup process to change syntax, and the io.open() function, which is essentially the
built in open function from Python 3.

The names provided are:

• PY3: True in Python 3, False in Python 2.

Unicode related

• decode, encode: Shortcuts to decode or encode strings, using sys.stdin.encoding by default, and using
replacement characters on errors.

• str_to_unicode, unicode_to_str, str_to_bytes, bytes_to_str: Convert to/from the platform’s standard str type
(bytes in Python 2, unicode in Python 3). Each function is a no-op on one of the two platforms.

• cast_unicode, cast_bytes: Accept unknown unicode or byte strings, and convert them accordingly.

• cast_bytes_py2: Casts unicode to byte strings on Python 2, but doesn’t do anything on Python 3.
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Miscellaneous

• input: Refers to raw_input on Python 2, input on Python 3 (needed because 2to3 only converts calls to
raw_input, not assignments to other names).

• builtin_mod_name: The string name you import to get the builtins (__builtin__ –> builtins).

• isidentifier: Checks if a string is a valid Python identifier.

• open: Simple wrapper for Python 3 unicode-enabled open. Similar to codecs.open, but allows universal new-
lines. The current implementation only supports the very simplest use.

• MethodType: types.MethodType from Python 3. Takes only two arguments: function, instance. The class
argument for Python 2 is filled automatically.

• doctest_refactor_print: Can be called on a string or a function (or used as a decorator). In Python 3, it converts
print statements in doctests to print() calls. 2to3 does this for real doctests, but we need it in several other places.
It simply uses a regex, which is good enough for the current cases.

• u_format: Where tests use the repr() of a unicode string, it should be written '{u}"thestring"', and fed to
this function, which will produce 'u"thestring"' for Python 2, and '"thestring"' for Python 3. Can also
be used as a decorator, to work on a docstring.

• execfile: Makes a return on Python 3 (where it’s no longer a builtin), and upgraded to handle Unicode filenames
on Python 2.

Architecture of IPython notebook’s Dashboard

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

The tables below show the current RESTful web service architecture implemented in IPython notebook. The listed
URL’s use the HTTP verbs to return representations of the desired resource.

We are in the process of creating a new dashboard architecture for the IPython notebook, which will allow the user to
navigate through multiple directory files to find desired notebooks.

Current Architecture

Miscellaneous

HTTP verb URL Action
GET /.*/ Strips trailing slashes.
GET /api Returns api version information.
* /api/notebooks Deprecated: redirect to /api/contents
GET /api/nbconvert

Notebook contents API.
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HTTP
verb

URL Action

GET /api/contents Return a model for the base directory. See /api/contents/<path>/<file>.
GET /api/contents/

<file>
Return a model for the given file in the base directory. See /api/contents/<path>/<file>.

GET /api/contents/
<path>/<file>

Return a model for a file or directory. A directory model contains a list of models (without
content) of the files and directories it contains.

PUT /api/contents/
<path>/<file>

Saves the file in the location specified by name and path. PUT is very similar to POST,
but the requester specifies the name, where as with POST, the server picks the name. PUT
/api/contents/path/Name.ipynb Save notebook at path/Name.ipynb. Notebook structure is
specified in content key of JSON request body. If content is not specified, create a new empty
notebook. PUT /api/contents/path/Name.ipynb with JSON body {“copy_from” : “[path/to/]
OtherNotebook.ipynb”} Copy OtherNotebook to Name

PATCH /api/contents/
<path>/<file>

Renames a notebook without re-uploading content.

POST /api/contents/
<path>/<file>

Creates a new file or directory in the specified path. POST creates new files or directories. The
server always decides on the name. POST /api/contents/path New untitled notebook in path.
If content specified, upload a notebook, otherwise start empty. POST /api/contents/path with
body {“copy_from”:”OtherNotebook.ipynb”} New copy of OtherNotebook in path

DELETE/api/contents/
<path>/<file>

delete a file in the given path.

GET /api/contents/
<path>/<file>
/check-
points

get lists checkpoint for a file.

POST /api/contents/
<path>/<file>
/check-
points

post creates a new checkpoint.

POST /api/contents/
<path>/<file>
/check-
points/
<check-
point_
id>

post restores a file from a checkpoint.

DELETE/api/contents/
<path>/<file>
/check-
points/
<check-
point_
id>

delete clears a checkpoint for a given file.

Kernel API
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HTTP
verb

URI Action

GET /api/kernels Return a model of all kernels.
GET /api/kernels /<kernel_id> Return a model of kernel with given kernel id.
POST /api/kernels Start a new kernel with default or given name.
DELETE /api/kernels /<kernel_id> Shutdown the given kernel.
POST /api/kernels /<kernel_id>

/<action>
Perform action on kernel with given kernel id. Actions can be “inter-
rupt” or “restart”.

WS /api/kernels /<kernel_id>
/channels

Websocket stream

GET /api/kernel specs Return a spec model of all available kernels.
GET /api/kernel specs/ <ker-

nel_name>
Return a spec model of all available kernels with a given kernel name.

Sessions API

HTTP
verb

URL Action

GET /api/sesions Return model of active sessions.
POST /api/sessions If session does not already exist, create a new session with given notebook name and

path and given kernel name. Return active session.
GET /api/sessions

/<session_id>
Return model of active session with given session id.

PATCH /api/sessions
/<session_id>

Return model of active session with notebook name or path of session with given
session id.

DELETE /api/sessions
/<session_id>

Delete model of active session with given session id.

Clusters API

HTTP
verb

URL Action

GET /api/clusters Return model of clusters.
GET /api/clusters <cluster_id> Return model of given cluster.
POST /api/clusters <cluster_id> <ac-

tion>
Perform action with given clusters. Valid actions are “start” and
“stop”
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Old Architecture

This chart shows the web-services in the single directory IPython notebook.

HTTP
verb

URL Action

GET /notebooks return list of dicts with each notebook’s info
POST /notebooks if sending a body, saving that body as a new notebook; if no body, create a a

new notebook.
GET /notebooks /<note-

book_id>
get JSON data for notebook

PUT /notebooks /<note-
book_id>

saves an existing notebook with body data

DELETE /notebooks /<note-
book_id>

deletes the notebook with the given ID

This chart shows the architecture for the IPython notebook website.

HTTP
verb

URL Action

GET / navigates user to dashboard of notebooks and clusters.
GET /<notebook_id> go to wepage for that notebook
GET /new creates a new notebook with profile (or default, if no profile exists) settings
GET /<notebook_id>

/copy
opens a duplicate copy or the notebook with the given ID in a new tab

GET /<notebook_id>
/print

prints the notebook with the given ID; if notebook doesn’t exist, displays error
message

GET /login navigates to login page; if no user profile is defined, it navigates user to dash-
board

GET /logout logs out of current profile, and navigates user to login page

This chart shows the Web services that act on the kernels and clusters.

HTTP
verb

URL Action

GET /kernels return the list of kernel IDs currently running
GET /kernels /<kernel_id> —
GET /kernels /<kernel_id> <action> performs action (restart/kill) kernel with given ID
GET /kernels /<kernel_id> /iopub —
GET /kernels /<kernel_id> /shell —
GET /rstservice/ render —
GET /files/(.*) —
GET /clusters returns a list of dicts with each cluster’s information
POST /clusters /<profile_id> /<cluster_ ac-

tion>
performs action (start/stop) on cluster with given profile
ID

GET /clusters /<profile_id> returns the JSON data for cluster with given profile ID
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JavaScript Events

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

(Note: this page is not currently consistent with IPython/Jupyter master)

Javascript events are used to notify unrelated parts of the notebook interface when something happens. For example,
if the kernel is busy executing code, it may send an event announcing as such, which can then be picked up by other
services, like the notification area. For details on how the events themselves work, see the JQuery documentation.

This page documents the core set of events, and explains when and why they are triggered.

Cell-related events

• command_mode.Cell

• create.Cell

• delete.Cell

• edit_mode.Cell

• select.Cell

• output_appended.OutputArea

CellToolbar-related events

• preset_activated.CellToolbar

• preset_added.CellToolbar

Dashboard-related events

• app_initialized.DashboardApp

• sessions_loaded.Dashboard

app_initialized.DashboardApp

When the Jupyter Notebook browser window opens for the first time and initializes the Dashboard App. The Dash-
board App lists the files and notebooks in the current directory. Additionally, it lets you create and open new Jupyter
Notebooks.
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Kernel-related events

• execution_request.Kernel

• input_reply.Kernel

• kernel_autorestarting.Kernel

• kernel_busy.Kernel

• kernel_connected.Kernel

• kernel_connection_failed.Kernel

• kernel_created.Kernel

• kernel_created.Session

• kernel_dead.Kernel

• kernel_dead.Session

• kernel_disconnected.Kernel

• kernel_idle.Kernel

• kernel_interrupting.Kernel

• kernel_killed.Kernel

• kernel_killed.Session

• kernel_ready.Kernel

• kernel_reconnecting.Kernel

• kernel_restarting.Kernel

• kernel_starting.Kernel

• send_input_reply.Kernel

• shell_reply.Kernel

• spec_changed.Kernel

kernel_created.Kernel

The kernel has been successfully created or re-created through /api/kernels, but a connection to it has not necessarily
been established yet.

kernel_created.Session

The kernel has been successfully created or re-created through /api/sessions, but a connection to it has not neces-
sarily been established yet.
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kernel_reconnecting.Kernel

An attempt is being made to reconnect (via websockets) to the kernel after having been disconnected.

kernel_connected.Kernel

A connection has been established to the kernel. This is triggered as soon as all websockets (e.g. to the shell, iopub, and
stdin channels) have been opened. This does not necessarily mean that the kernel is ready to do anything yet, though.

kernel_starting.Kernel

The kernel is starting. This is triggered once when the kernel process is starting up, and can be sent as a message by the
kernel, or may be triggered by the frontend if it knows the kernel is starting (e.g., it created the kernel and is connected
to it, but hasn’t been able to communicate with it yet).

kernel_ready.Kernel

Like kernel_idle.Kernel, but triggered after the kernel has fully started up.

kernel_restarting.Kernel

The kernel is restarting. This is triggered at the beginning of an restart call to /api/kernels.

kernel_autorestarting.Kernel

The kernel is restarting on its own, which probably also means that something happened to cause the kernel to die. For
example, running the following code in the notebook would cause the kernel to autorestart:

import os
os._exit(1)

kernel_interrupting.Kernel

The kernel is being interrupted. This is triggered at the beginning of a interrupt call to /api/kernels.

kernel_disconnected.Kernel

The connection to the kernel has been lost.
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kernel_connection_failed.Kernel

Not only was the connection lost, but it was lost due to an error (i.e., we did not tell the websockets to close).

kernel_idle.Kernel

The kernel’s execution state is ‘idle’.

kernel_busy.Kernel

The kernel’s execution state is ‘busy’.

kernel_killed.Kernel

The kernel has been manually killed through /api/kernels.

kernel_killed.Session

The kernel has been manually killed through /api/sessions.

kernel_dead.Kernel

This is triggered if the kernel dies, and the kernel manager attempts to restart it, but is unable to. For example, the
following code run in the notebook will cause the kernel to die and for the kernel manager to be unable to restart it:

import os
from IPython.kernel.connect import get_connection_file
with open(get_connection_file(), 'w') as f:

f.write("garbage")
os._exit(1)

kernel_dead.Session

The kernel could not be started through /api/sessions. This might be because the requested kernel type isn’t in-
stalled. Another reason for this message is that the kernel died or was killed, but the session wasn’t.

Notebook-related events

• app_initialized.NotebookApp

• autosave_disabled.Notebook

• autosave_enabled.Notebook

• checkpoint_created.Notebook

• checkpoint_delete_failed.Notebook

• checkpoint_deleted.Notebook
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• checkpoint_failed.Notebook

• checkpoint_restore_failed.Notebook

• checkpoint_restored.Notebook

• checkpoints_listed.Notebook

• command_mode.Notebook

• edit_mode.Notebook

• list_checkpoints_failed.Notebook

• notebook_load_failed.Notebook

• notebook_loaded.Notebook

• notebook_loading.Notebook

• notebook_rename_failed.Notebook

• notebook_renamed.Notebook

• notebook_restoring.Notebook

• notebook_save_failed.Notebook

• notebook_saved.Notebook

• notebook_saving.Notebook

• rename_notebook.Notebook

• selected_cell_type_changed.Notebook

• set_dirty.Notebook

• set_next_input.Notebook

• trust_changed.Notebook

Other

• open_with_text.Pager

• rebuild.QuickHelp

Setup IPython development environment using boot2docker

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

The following are instructions on how to get an IPython development environment up and running without having to
install anything on your host machine, other than `boot2docker <https://github.com/boot2docker/boot2docker>`__
and `docker <https://www.docker.com/>`__.
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Install boot2docker

Install boot2docker. There are multiple ways to install, depending on your environment. See the boot2docker docs.

Mac OS X

On a Mac OS X host with Homebrew installed:

$ brew install boot2docker docker

Initialize boot2docker VM

$ boot2docker init

Start VM

$ boot2docker up

The boot2docker CLI communicates with the docker daemon on the boot2docker VM. To do this, we must set
some environment variables, e.g. DOCKER_HOST,

$ $(boot2docker shellinit)

To view the IP address of the VM:

$ boot2docker ip
192.168.59.103

Install ipython from Development Branch

$ git clone --recursive https://github.com/ipython/ipython.git

Build Docker Image

Use the Dockerfile in the cloned ipython directory to build a Docker image.

$ cd ipython
$ docker build --rm -t ipython .
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Run Docker Container

Run a container using the new image. We mount the entire ipython source tree on the host into the container at
/srv/ipython to enable changes we make to the source on the host immediately reflected in the container.

# change to the root of the git clone
$ cd ipython
$ docker run -it --rm -p 8888:8888 --workdir /srv/ipython --name ipython-dev -v `pwd`:/
→˓srv/ipython ipython /bin/bash

To list the running container from another shell on the host:

$ $(boot2docker shellinit)
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS ␣
→˓ PORTS NAMES
f6065f206519 ipython "/bin/bash" 1 minutes ago Up 1␣
→˓minutes 0.0.0.0:8888->8888/tcp ipython-dev

Install IPython in Editable Mode

Once in the container, you’ll need to uninstall the ipython package and re-install in editable mode to enable your dev
changes to be reflected in your environment.

container $ pip uninstall ipython

# pip install ipython in editable mode
container $ cd /srv
container $ ls
ipython
container $ pip install -e ipython

Run Notebook Server

container $ ipython notebook --no-browser --ip=*

Visit Notebook Server

On your host, run the following command to get the IP of the boot2docker VM if you forgot:

# on host
$ boot2docker ip
192.168.59.103

Then visit it in your browser:

# browser
http://192.168.59.103:8888

As a shortcut on a Mac, you can run the following in a terminal window (or make it a bash alias):
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$ open http://$(boot2docker ip 2>/dev/null):8888

Testing Kernels

Attention: This is copied verbatim from the old IPython wiki and is currently under development. Much of the
information in this part of the development guide is out of date.

IPython makes it very easy to create wrapper kernels using its kernel framework. It requires extending the Kernel class
and implementing a set of methods for the core functions like execute, history etc. Its also possible to write a full blown
kernel in a language of your choice implementing listeners for all the zmq ports.

The key problem for any kernel implemented by these methods is to ensure that it meets the message specification. The
kerneltest command is a means to test the installed kernel against the message spec and validate the results.

The kerneltest tool

The kerneltest tool is part of IPython.testing and is also included in the scripts similar to iptest. This takes 2 parameters
- the name of the kernel to test and the test script file. The test script file should be in json format as described in the
next section.

kerneltest python test_script.json

You can also pass in an optional message spec version to the command. At the moment only the version 5 is supported,
but as newer versions are released this can be used to test the kernel against a specific version of the kernel.

kerneltest python test_script.json 5

The kernel to be tested needs to be installed and the kernelspec available in the user IPython directory. The tool will
instantiate the kernel and send the commands over ZMQ. For each command executed on the kernel, the tool will
validate the reply to ensure that it matches the message specification. In some cases the output is also checked, but
the reply is always returned and printed out on the console. This can be used to validate that apart from meeting the
message spec the kernel also produced the correct output.

The test script file

The test script file is a simple json file that specifies the command to execute and the test code to execute for the
command.

{
"command":{

"test_code":<code>
}

}

For some commands in the message specification like kernel_info there is no need to specify the test_code parameter.
The tool validates if it has all the inputs needed to execute the command and will print out an error to the console if
it finds a missing parameter. Since the validation is built in, and only required parameters are passed, it is possible to
add additional fields in the json file for test documentation.
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{
"command":{

"test_name":"sample test",
"test_description":"sample test to show how the test script file is created",
"test_code":<code>

}
}

A sample test script for the redis kernel will look like this

{
"execute":{
"test_code":"get a",
"comments":"test basic code execution"

},
"complete":{
"test_code":"get",
"comments":"test getting command auto complete"

},
"kernel_info":{
"comments":"simple kernel info check"

},
"single_payload":{
"test_code":"get a",
"comments":"test one payload"

},
"history_tail":{
"test_code":"get a",
"comments":"test tail history"

},
"history_range":{
"test_code":"get a",
"comments":"test range history"

},
"history_search":{
"test_code":"get a",
"comments":"test search history"

}
}

A template for new Python files in IPython: template.py

Whether you are a new, returning, or current contributor to Project Jupyter’s subprojects or IPython, we welcome you.

Project Jupyter has seen steady growth over the past several years, and it is wonderful to see the many ways people
are using these projects. As a result of this rapid expansion, our project maintainers are balancing many requirements,
needs, and resources. We ask contributors to take some time to become familiar with our contribution guides and spend
some time learning about our project communication and workflow.

The Contributor Guides and individual project documentation offer guidance. If you have a question, please ask us.
Community Resources provides information on our commonly used communication methods.

We are very pleased to have you as a contributor, and we hope you will find valuable your impact on the projects.
Thank you for sharing your interests, ideas, and skills with us.
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3.5.6 Do I really have something to contribute to Jupyter?

Absolutely . There are always ways to contribute to this community! Whether it is is contributing code, improving
documentation and communications, teaching others, or participating in conversations in the community, we welcome
and value your contribution!

3.5.7 What kinds of contributions can I make?

The following sections try to provide inspirations for different ways that you can contribute to the Jupyter ecosystem.
They’re non-complete - if you can think up any way to make an improvement, we appreciate it!

Improving documentation

One of the most important parts of the Jupyter ecosystem is its documentation. Good documentation makes it easier for
users to learn how to use the tools. It also makes it easier to teach others, and to maintain and improve the code itself.
There are many ways to improve documentation, such as reading tutorials and reporting confusing parts, finding
type-os and minor errors in docs, writing your own guides and tutorials, improving docstrings within the code,
and improving documentation style and design.

If you’d like to improve documentation in the Jupyter community, check out the Documentation Guide.

Improving code

There are many different codebases that make up the tools in the Jupyter ecosystem. These are split across many
repositories in several GitHub organizations. They cover many different parts of interactive computing, such as user
interfaces, kernels, shared infrastructure, interactive widgets, or structured documents.

We recommend checking out the Developer Guide for more information about how you can find the right project to
contribute to, and where to go next.

Participating in the community

The most important part of Jupyter is its community - this is a large and diverse group of people spread across the globe.
One of the best ways to contribute to Jupyter is to simply be a positive and helpful member of this community. Whether
it participating in online conversations, offering to help others, coming to community meetings, or teaching
others about Jupyter, there are many ways to improve the Jupyter community. For more information about this, we
recommend starting with the Community.

3.6 Reference

3.6.1 Custom mimetypes (MIME types)

What’s a mimetype?

When an internet request and response occurs, a Content-Type header is passed. A mimetype, also referred to as
MIME type, identifies how the content that is being returned should be handled or used, based on type, by the application
and browser. A MIME type is made up of a MIME group (i.e. application, image, audio, etc.) and a MIME subtype.
For example, a MIME type is image/png where MIME group is image and subtype is png.

As types may contain vendor specific items, a custom vendor specific MIME type, vnd, can be used. A vendor specific
MIME type will contain vnd such as application/vnd.jupyter.cells.
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Custom mimetypes used in Jupyter and IPython projects

• application/vnd.jupyter

• application/vnd.jupyter.cells

• application/vnd.jupyter.dragindex used by nbdime

• application/x-ipynb+json for notebooks

• text/html

– metadata:

∗ isolated: boolean – HTML should be rendered inside an <iframe>.

Listing of custom mimetypes used for display

• application/vnd.geo+json - GeoJSON spec application/vnd.geo+json is now deprecated and replaced
by application/geo+json

• application/geo+json - preferred GeoJSON spec

• application/vnd.plotly.v1+json - Plotly JSON Schema

• application/vdom.v1+json - Virtual DOM spec

3.6.2 IPython

Description

IPython provides a rich architecture for interactive computing with:

• A powerful interactive shell.

• A kernel for Jupyter.

• Support for interactive data visualization and use of GUI toolkits.

• Flexible, embeddable interpreters to load into your own projects.

• Easy to use, high performance tools for parallel computing.

Background

IPython is a growing project, with increasingly language-agnostic components. IPython 3.x was the last monolithic
release of IPython, containing the notebook server, qtconsole, etc. As of IPython 4.0, the language-agnostic parts of the
project: the notebook format, message protocol, qtconsole, notebook web application, etc. have moved to new projects
under the name Jupyter. IPython itself is focused on interactive Python, part of which is providing a Python kernel for
Jupyter.
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Resources

3.6.3 Glossary

client-server-architecture
A software design pattern used by Jupyter applications like JupyterLab. With this pattern, a server program
(running on a user’s computer or on a server that can be accessed over a business or public network) provides
access to stored information (in JupyterLab’s case, documents in a folder such as notebooks and other data files),
and a client program (the web application and editing interface for JupyterLab in this case) connects to the server
program to view and interact with that data.

console
In modern times, a console refers to a simple text-based program where you type commands for your computer
to run, also commonly called a terminal.

command line
A simple text-based program where you type commands for your computer to run, also called a terminal or
console.

Command Prompt
On Windows, this is the application where commands are typed into a window for execution. Also see console,
command line, or terminal.

conda
The package management tool for Anaconda, which allows for easy installation of Python libraries and other
tools into an environment.

config
Refers to the configuration files, and related processes that affect how Jupyter behaves.

environment
The name for the installed software, configurations, tools, and environment variables that collectively define
what capabilities a computer system has and how it behaves. Missing or incorrect software, configurations or
environment variables can cause software to malfunction, or software development processes to fail. See this
link for more information.

environment variable
See this wiki link for for information.

ipynb
The file extension (.ipynb) for saved notebook files, commonly authored and edited with Jupyter web applications
such as JupyterLab or Jupyter Notebook. It stands for “IPython Notebook”.

IPython
The earliest ancestor of Project Jupyter. It began as an improved interactive Python REPL, then expanded to
also contain a stored notebook document format (.ipynb) and related tools, a web based document authoring and
editing tool (IPython Notebook), and more. After the project became large enough, IPython was split into many
separate projects under the Project Jupyter umbrella through The Big Split.

IPython Notebook
An early ancestor of the Jupyter Notebook application, this was one of the first web-based applications for au-
thoring and editing computational notebook documents.

ipywidgets
A python package for Jupyter that allows Notebook applications to create and embed interface components like
sliders or buttons in their notebooks.

Jovyan
A term for fans of Jupyter and members of the Jupyter community. This term is derived from the astronomical
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term “Jovian”, meaning “Like Jupiter”.

Jupyter
See Project Jupyter. Also occasionally used to refer to one of the Jupyter frontend notebook editing applications
(Jupyter Notebook or JupyterLab) based on the context it’s used in (this ambiguous usage can lead to confusion,
it’s better to use the actual name of the application).

Jupyter Notebook (Application)
A simplified web application for authoring and editing computational notebooks in the .ipynb format (a notebook
file is also commonly referred to as a Jupyter Notebook).

Jupyter Notebook (File Format)
A common name for a saved .ipynb Notebook file. For instance, “I just made a Jupyter Notebook summarizing
our lab results, I can send it to you later today.”

JupyterLab
A modern web application for authoring and editing interactive computational notebooks.

kernel
A kernel provides programming language support in Jupyter. IPython is the default kernel. Additional kernels
include R, Julia, and many more.

Notebook
The generic name for a computational notebook document, such as a saved .ipynb file format created by Jupyter-
Lab. Also sometimes used as a shorthand to refer to Jupyter Notebook, the notebook editing application.

Notebook Dashboard
The notebook user interface in the Jupyter Notebook Application (see above) which shows a list of the note-
books, files, and subdirectories in the directory where the notebook server is started.

pip
Python package manager.

profiles
Not available in Jupyter. In IPython 3, profiles are collections of configuration and runtime files.

Project Jupyter
The umbrella project for many related tools for interactive computing with interactive notebooks

REPL
Stands for “read-eval-print-loop”. An REPL is a program that reads user commands and inputs, evaluates them,
and prints results for the user to view. These steps run in a perpetual loop, allowing the user to prototype code,
interact with data, and view results on-the-fly, since the data and code stay open in memory after evaluation while
the REPL is running.

terminal
In modern times, a terminal refers to a simple text-based program where you type commands for your computer
to run, also commonly called a console.

The Big Split
An event and effort undertaken around 2015 by IPython developers to split up the then-massive IPython project
into a series of smaller, more focused sub-projects under the Project Jupyter umbrella.

widget
A user interface component from ipywidgets, similar to a plugin, that allows customized input, such as a slider.
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3.6.4 Resources

• genindex

• search
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Site Description
Jupyter website Keep up to date on Jupyter
IPython website Learn more about IPython
Jupyter Discourse forum Start here for help and support questions
Jupyter Accessibility Accessibility sub-project documentation
Jupyter mailing list General discussion of Jupyter’s use
Jupyter in Education group Discussion of Jupyter’s use in education
NumFocus Promotes world-class, innovative, open source scientific software
Donate to Project Jupyter Please contribute to open science collaboration and sustainability
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